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THE RAY-METHOD FOR NONLINEAR SHIP WAVES
by

F.J. Brandsma

(Delft University of Technology, The Netherlands)

The work presented here concerns the use of the ray-method for calculating the wave
pattern and the wave resistance of non-thin ships moving at low speed, that is for
small values of the Froude number F. Two aspects are treated, Firstly a method for
ray-tracing, and secondly the calculation of some excitation coefficients.

The application of the ray-method to ship waves results into a nonlinear equation for
the phase function S (see f.i. Keller [3]). The characteristics of this equation are
called "rays" and are determined by four ordinary differential equations. For the
general case these equations only can be solved numerically. This was done earlier
by Yim [2] for bow- and stern waves. The results found here, using a Runge-Kutta
method with a self-adjusting step, did not agree with the ones found by Yim for bow
waves. No intersections were found of the rays with the waterline. In fig. 1 results
are shown for a lens-shaped object. Once the ray-paths are known the phase function
itself may be computed, solving an ordinary differential equation along these rays.
In fig. 2 some wave-fronts are plotted, for the same object.

fig. 1 fig. 2

In order to calculate also the amplitude function, excitation coefficients at the
source points are needed. For thin ships the Michell theory may be used to obtain
these coefficients, as shown by Keller. Here a different approach will be followed
for non-thin ships. In [2] Hermans derived an expression for the perturbation
potential, combining a perturbation technique with a multiple scale approach. The
result was that a source-distribution should be taken over the total free surface.
For small values of the Froude number the resulting expression for the wave-height
h can be expanded and the leading term is an integral along the waterline of the
ship:
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In which ¢v is the "double-body" potential, n the normal vector to the waterline,
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k=F the wave number, and the function D consists of terms containing derivatives
of ¢v' It can be shown that this integral when evaluated for (x,z) > «, is the same

as derived by Baba [1], but it is questionable whether the limiting case is meaning-
full because of the use of a multiple scale approach. However for finite distances
to the waterline it is assumed that this integral gives a good approximation for the
wave height.

After asymptotic expansion of this integral for small Froude numbers (large wave
numbers) two types of contributions remain:

1) contributions from bow and stern.

2) contributions from points at the waterline at which stationary phase occurs.

It depends on the geometry of the waterline at bow and stern which of these two types
gives the major contribution. For thin ships it can be shown that the major con=-
tribution arises from the bow and stern waves, while the order of magnitude in the
limiting case will be the same as in the Michel¥ theory.

Excitation coefficients for the use of the ray method may now be derived from this
integral by letting (x,z) tend to the waterline. For bow- and stern rays this works
well and results will be presented for several geometries.

For the second type of contributions problems arise because of the fact for (x,z)
tending to the waterline, the direction of the rays will be tangent to the waterline.
For that reason the integral is evaluated first at points at a small distance to the
waterline and these points will be used as starting points for the rays.

Conclusions:

The ray method can be used for calculating the wave-patterns of ships moving at low
Froude number. The excitation coefficients may be derived by asymptotical expansion
of the integral (1). For thin ships the same order of magnitude is found as in the
Michell theory.
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Discussion

Why do all rays emanate from the bow?

Only the bow waves have been studied so far, but the stern
waves and waves emanating from other parts of the waterline
are also being investigated.

The asymptotic theory for low Froude numbers is clearly a very
difficult one, and many outstanding investigators such as
Keller and Tulin have tried it without conspicuous success.
The present study seems to be along the right lines and could
lead to predictions of the correct limiting results as the
Froude number tends to zero, especially for quantities other
than the wave resistance. Nevertheless, I question the need
for low-Froude-number theories. At Froude numbers below about
0.3, the wave resistance is not important compared to viscous
resistance. Only when the wave resistance really starts to
increase, say for Froude numbers of 0.35, is it comparable to
the viscous resistance. But then the more conventional
finite-Froude-number theories (even the oft-maligned

Michell's integral) do a reasonable job. I am not convinced
of the need for a low-Froude-number theory which is bound to
be extremely complicated (or else it would have been worked
out long ago!) in order to predict something that is in any
case negligible.

Froude numbers above .15 certainly are interesting. Tuck is
basing his definition of "low Froude number" upon his prior
knowledge that wave resistance is insignificant for Froude
numbers less than say, 0.10. In fact, in the present context,
one cannot say when "small" is small without knowledge of
"exact" calculations, which are lacking. A priori, it was
quite conceivable that a Froude number of 0.4 would still be
small enough. Tuck's point of view is analogous to an earlier
one that Michell theory could be automatically disregarded
because it applied only to ships as thin as a "knife edge".
Neither approximation has turned out to be very practical, but
this could not have been known before trying them.




