77
WAVE PROBLEMS WITH SPACE-DEPENDENT BOUNDARY CONDITIONS
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The usual linearised condition for waves of frequency w/2r in water
of depth H 1is

Ky - 3¢/8z = 0 . (1)

where ¢ 1is the time-independent velocity potential, 2z is measured
vertically upwards, and K = wp2/g.

There exist situations in which it is desirable to seek harmonic

functions ¢ which satisfy (1) when K 1is replaced by a function of the
horizontal space co-ordinates. For example when

K =K(x) =K + (K, - K)H(x) )

where H 1is the Heaviside step function, the equations can describe the
propagation of waves from x = —~_ encountering a region (x > 0) of small
floating surface particles. Here K, = w?/g as before whilst

-1 . o o .
K, = %; (1 - sth) where s is the specific gravity of the particles, and

h their thickness. This problem was solved by Peters [1] in deep water and
extended by Weitz and Keller [2] to finite water depth and oblique incidence,
using the Wiener-Hopf technique. If we wished to allow for a smoothly varying
change in surface density of the surface particles we might choose

K(x) = (K, + K, exp(x/a)/(1 + exp(x/a)) 3)
with a > O, which approaches (2) as z > O.

It turns out that with this form for K(x) the problem can still be
solved explicitly and results for |R| the magnitude of the reflection
coefficient can be obtained with little labour. In fact the boundary-value
problem is identical to that solved by Roseau [3] in considering the
reflection of waves over a bottom topography of a special type. After
conformally mapping the fluid region he obtained the present problem in the
transformed plane. He solved the problem in a long paper by means of
Fourier-type integrals, reducing the problem to the solution of a
functional-difference equation.

A simplified description of the technique as it applies to the present
problem and its extension to oblique waves is given in a recent paper by
Evans [4] where further applications of the technique to other physical problems
are suggested.

In the context of water—wave problems the method is appropriate whenever -
the wavenumber of free waves at one infinity changes smoothly for whatever
reason to a different constant value at the other infinity.

In the present paper we consider a further extension of the method to the
problem of waves propagating through fast ice modelled as a thin elastic plate
covering the water surface (Squire [8]). The ice thickness is assumed to vary
smoothly from one constant value to another so that the resulting wave-number
varies also with distance along the free-surface. To simplify matters, the
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shallow-water equations will be used although it is anticipated that the
technique will work for the full linear theory also. The advantage of the
shallow-water approximation, despite it being restricted to waves which are
much longer than the water depth, is that only ordinary differential equations
are involved although the coefficients are space-dependent.

With X,y as horizontal co-ordinates, 2z vertically upwards, the
velocity potential ¢(x,y,z,t) satisfies

3 p.h(x)
¢tt + gnt = - —-—}BL—QEZ—— V“n - n
12p(1 - \)2) t P tt

where
v2 = 32/3%% + 32/03y?

and n(x,y,t) 1is the surface elevation. Here E 1is Young's modulus,
v is Poisson's ratio, p.,(p) the density of the ice, (water) and
h = h(x) the ice thickness assumed to vary in the x-direction only.

'Now on shallow-water theory

n, = (h - H)V2%

where H 1is the water depth. If we assume h(x)/H << 1 and look for a
solution ¢ = Re ¢(x,z)exp(-iwt), we obtain

6 2
M) S+ L8, w2y 20 (4)
dx® dx? °
where M(x) = Eh3(x)/12pg(1 - v2)
and ki = w?/gH.

We now assume
M(x) = (M'exp(x/a) + M)/(exp(x/a) + 1). (5)

For example if M = O this M(x) describes an ice cover whose thickness

varies smoothly from zero at x = =~ to a constant value determined by

M! = Eh3(=)/12pg(1 - v2) at x = 4o, With M' # 0 the thickness varies
smoothly over a length scale 0(a) from one constant value at x = -® to

a different value at x = +», The limit problem M = 0, a > 0 corresponding

to a sudden change in ice thickness from zero to a constant value at x = O which
is discussed in Stoker [5] and was extended to oblique incidence by Evans

and Davies [6].

Equations (4) and (5) can be written

Xarel® v o +120) +ue{® v o+ 120 = 0

where a = 1 without loss of generality.




Now we can show that a contour integral solution of the form

b = oL J % ¢ (1) de

21 G kS + 12 - k2

exists provided

) f(k + i) _ _
8 T

Mk6 + K2 - k2
(6)

M'k® + k2 - K2
o

and b) the contour C 1is chosen suitably.

A similar approach was used by Levine [7] for a second-order differential
equation with variable coefficients. Both of these conditions can be satisfied
and f(k) determined such that ¢ behaves in the required way at +w. 1In
particular it is found that

|R| = sinhm(k, - k{)/sinhﬂ(k1 + k)

where kl, k; are the real positive roots of

—

M6 + k2 - kg =0, Mk® + k2 - kg =0

respectively.

Returning to the full linear problem, the functional-difference equation
which needs to be solved is

- F(k + i) _ K = k(1 + Mk")tanhkH
K - k(1 + M'k")tanhkH

which can be treated using either Fourier transforms or infinite product
decompositions. It is anticipated that in this case

o Ly s ,
|R] sinhm(k - k!)/sinhm(k  + k)

where ko, k; are the real positive roots of the numerator and denominator
of (7) “respectively.
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Discussion

Are these calculations for constant depth?

Yes, they are for constant thickness at either infinity
or constant depth of water.

Did you allow for any energy dissipation in your ice
model? How important is it?

No, there is no allowance for energy loss. I believe V.
Squires investigated mechanical dissipation. The effect was
not too great.

There are reports from seamen navigating in the Arctic
that the largest wave amplitude waves occur some distance (a
few hundred meters to one kilometer) into the free-ocean

side from the edge of the pack ice. Do you see this feature
in your model?

No, we have not investigated amplitudes.

Perhaps I could make a comment on the applicability of the
method which is based on Roseau's work. It appears it can be
extended to any problem in which the wavenumbers change
smoothly from one infinity to the other in a particular
manner. For example, the problem of acoustic waves
travelling down a wave guide bounded by rigid walls into a
region where an abrupt change to an impedance condition
occurs can be solved using the Wiener-Hopf technique. We can
use the present method to solve for a smooth change from the
rigid to impedance condition and get the result for |R|
fairly quickly. The result goes over to the result for an
abrupt change in the appropriate limit.

Your choice of smoothly varying wavenumber is interesting.
However, there are many ways a function can smoothly vary
from ky to kyg. How important is the choice?

It is crucial. It has to be the ratio of exponentials to
obtain a functional difference equation.

I compliment the authors on understanding Roseau's paper.
Now there may be three times as many people in the world
who understand that paper. I am not one of them!

In computing reflection and transmission coefficients of
waves propagating over a step on the bottom, I found that the
discontinuity of the bottom slope causes these coefficients
to oscillate as functions of frequency.




Agnon: It would be interesting to look at group velocity.

Evans: The group velocity techniques have not been investigated
in detail so far.




