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The possibility of performing large scale, cost effective extraction of
energy from the ocean waves has received considerable attention over the
last two decades, motivated, no doubt, by the desire to obtain a clean,
renewable energy source. In particular, a Norwegian research group has
investigated the feasibility of constructing a system of underwater
structures which would act like a lens and focus waves prior to harnessing
their energy. Such a lens system would operate under the principles
which govern the focussing of light waves. As a wave enters the shallower
region over the submerged body, so the wave length is decreased and as
is well-known, the wave speed is reduced. Thus, a phase lag is induced in
the transmitted wave on the far side of the bt;dy. A water wave lens
would be made up of several submerged bodies, each of which is capable of
retarding the wave by a different amount.

Each lens element must clearly possess the property that it reflects
very little of the incident wave over a wide range of frequencies. A
notable candidate for such an element is a submerged, circular cylinder
which is transparent to normally incident waves of all frequencies and the
use of such a cylinder as a lens element has been reported elsewhere. In
addition as the lens element would doubtless be moored in some way, it is
necessary to determine how the reflection and transmission coefficients are
affected by the motion of the element. It is also desirable, for cost
purposes that the element should not be too bulky.

In the present work, linear theory is used to investigate the
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transmission of surface waves normally incident on a submerged, horizontal
plate which is moored to the seabed by four, vertical, elastic cables,
symmetrically placed around the plate. As a first approximation, it is
assumed that two-dimensional motion only need be considered as if, for
example, the plate were in a narrow wave tank. "It is also assumed that the
presence of the cables does not affect the wavefield. The usual
assumptions of an inviscid, incompressible fluid and irrotational flow are
made. Linear theory is used so the velocity potential may be split into two
fundamental parts; one due to the scattering of waves by the fixed plate
and the other due to the radiation of waves by the moving plate into
otherwise calm water. The full solution to both the scattering and
radiation potentials is obtained by the method of matched eigenfunction
expansions, which is outlined below for the scattering potential. The
equations of motion are derived which determine the amplitude of oscillation
of the plate in each of its modes of motion.

The procedure of matched eigenfunctions is as follows. The symmetry
of the geometry is exploited by splitting the potential into symmetric and
antisymmetric parts which then need to be solved in the region x > 0 only.
This area is then split into three regions; above the plate, below the plate
and to the right of the plate. The potential is written as an eigenfunction
expansion in each region, the coefficients of which are determined by
requiring continuity of the potential and horizontal velocity on the
boundaries of the regions. Systems of equations arise from the matching
of the potential and horizontal velocity on the boundaries, which are split
into real and imaginary parts, truncated at a suitable number of terms and
solved using a standard Gaussian Elimination routine. It may be shown
that, as a consequence of there being a square root singularity in the
velocity at the ends of the plate, the coefficients in the potential expansion
behave like n™3/2 for large n.

Checks on the numerical results are provided by making comparisons
with two approximate solutions. The first of these assumes that the plate
width is large compared to the wavelength and the second is based on
shailow water theory. Good agreement is obtained with the full results
over the respective ranges of validity., The effect of the moorings on the

response motion of the plate is examined and it is observed that whilst
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very stiff cables considerably reduce the motion of the plate from what it
would be if it were neutrally buoyant, it is possible, by choosing an
intermediate stiffness parameter, for the response motion to be larger than
that for the neutrally buoyant plate over part of the frequency range. It
is also observed that the heave response of the plate is zero when the
plate width is an integral number of wavelengths, referring to the
wavelength over the plate, independent of the choice of stiffness in the
cables.

The effect of varying the mooring stiffness on the far field form of
the potential is examined and it is shown that by an appropriate choice of
the stiffness parameter, both the total reflection and total transmission
coefficients are 180 degrees out of phase with what they would be for a
fixed plate. Results are presented illustrating the variation of the
amplitude of the total reflection coefficient and also the phase of the total
transmission coefficient with frequency and it is found that a necessary
condition to obtain a small reflectibn coefficient coupled with an appreciable
phase change in the transmission coefficient, is that the plate width should

be at least half to once times the incident wavelength.
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Discussion
Why is there no heave-roll coupling?

There is no coupling if the moorings are vertical and
symmetric.

Is flow separation important at the ends of the plate?

Yes, it is possible and Stiassnie has looked at vortex
shedding.

How does the convergence of the eigenseries relate to
the square-root singularity at the end of the plate?

There is a square root singularity at the end of the plate,
so the coefficients in the potential expansion go like n-3

Another possible approach is to use the Cauchy-integral
approach which is very elegant and involves only say, 8
terms.

Yes, that is nice.
How many parameters are there?

I have looked at a theoretical model. We did not say what
experimental parameters we are looking at. We would have to
look at thickness, etc.

Regarding your conclusion that the motion response can be
made to resonate by carefully selecting the mooring
stiffness, is the converse true? In fact, the underlying
idea behind tube pump moorings was to change the stiffness,
to remove unwanted resonant motions. Did you treat
explicitly the ratio of the hydrodynamic stiffness to the
mooring stiffness or simply assign values of stiffness
consistent with taut moorings?

I just assumed the moorings were taut.

Did Heins do the half plane problem with a linearized free
surface condition, presumably using the Wiener-Hopf method?

Yes, you can actually get the reflection coefficient
explicitly that way.

I am concerned about a highly tuned lens where the plate
length is much longer than the wavelength. How can such a
lens be useful over a broader spectrum of ocean waves?
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Perhaps E. Mehlum can answer that.

You are quite right. However, there are body shapes which
are more effective than the flat plate. For these shapes or
contours I recommend a Cauchy formulation to do the
calculations. The flat plate is interesting as a start to
study these problems, but it is not very useful in practice
for the reasons mentioned by Newman.




