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CHANGES OF THE WAVE ELEVATION CAUSED BY UNDER-WATER RIDGES.
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INTRODUCTION

When water-waves, at relatively constant water depth, pass over under-water ridges, the waves
are modified. The modifications are due to two effects:

* Reflection of wave energy from the ridges and transmision of wave energy across the ridges.

A phase shift of the transmitted and reflected waves compared with that of the incoming
wave.

*

The first effect (in its two-dimension analogy) produces a decrease of the wave amplitude on the lee
side of the ridges. The second one creates a non-uniformity in the wave field, causing partial cance-
lation of the waves in some domains and a strengthening in others. The sum of these effects cause a

wave pattern in the area around the ridges where there are domains with decreasing and - with
increasing wave height.

The present study is based on the following simplifying assumptions:
*  Linearized, long wave length theory.
*  The ridges are assumed to be slender

To solve the problem the method of matched asymptotic expansions is applied.

The objective of the project is to determine a configuration of under-water structures which is
capable of reducing the wave height in a specified area of the Ekofisk field in the North Sea.

PROBLEM FORMULATION.

The problem is, at this stage, formulated for one single under-water ridge with an incoming, long
crested wave. If we regard the problem from a view point situated "far" from the ridge (i.e. at a
distance of the order of the length of the ridge), ' it appears in the picture as a line with a finite
length. If we, on the other hand, are closing in on the ridge and regard the problem from a view
point which is situated close to the ridge (i.e. at a distance of the order of the crossectional dimen-
sions of the ridge), it appears as an extremely long cylinder with finite crossectional dimensions.
The solution to this problem is found by applying the method of matched asymptotic - expansions
and the development of the solution to leading order basically follows Tuck /1/.

Thenec_zr ld _solution.

In this domain the characteristic length scale is of the order of the crossectional dimensions of the
ridge, and accordingly much smaller than the wave length. This means that the free surface condi-

tion is given from the long wave-length limit, i.e. as = 0, or in other terms: as an impermeable

lid. Further more, the ridge is assumed to be slender. This implies that the derivatives in the axial
direction (i.e. the y-direction) are much smaller than in the crossectional directions, which in turn
means that Laplace’s equation reduces to its two-dimensional version in the near field:

_62_¢.+ﬂ=0.
2 azz

Consistent with the boundary conditions the velocity field far away from the body (in the inner
domain) is given in terms of a parallel flow, with the asymptotic expansion of the velocity poten-
tial given as:

Hx.zyer)= Ulyz)x +U(y:t)-%- X +C)

\ I
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as |x | =co. A(y) is the "blockage length” which has to be determined from the detailed solution
of the inner problem and C(y) an additional constant (determined from the matching to the far
field, as will be shown later). The solution of the inner problem, and hence A(y ), can be found by
means of different numerical techniques. For the special case of a rectangular crossection the
values of A are found by Flagg and Newman /2/. To compute the forces and overturning moments
acting on the ridge, the details of the near field solution has to be inspected more closely.

The far field solution.

In this domain the solution consists of an incoming wave plus a diffracted wave system. Both are

assumed to progress as waves in this domain, and thus having a dependency on the vertical coordi-
nate of the common form:

o-srror SHED

where k is the wave number. corresponding to the actual frequency, and H is the water depth. z is
the vertical coordinate, pointing upwards and being zero at the bottom and (x.y) are the horizontal
coordinates.

This means that the function ¢(x .y it ) is governed by the equation:

ﬁ%+§%+k2¢=o.

The incoming wave is given in the form:
¢r = exp (—ik, x —ik,y Jexp (i wt)

where k& = (k.2 + k,%). In addition to this we have the diffracted wave-system, determined from
a distribution of singularities along the slit formed by the slender ridge. From the outer expansion
of the inner solution:

. +yA _x .
X UCEDL +U(y.¢)2—-—-|xl +C(y:x)

it is obvious that the singularity should have a continuous normal velocity across the slit, but
must have a discontinuous potential. Thus a dipole is chosen, with the Green function:

Zot)= O 52 =0 @
G(x.y:€mk) GEH(; (kp) Oxilé (kp)

where H §2) is the Hankel function of zeroth order and second kind, satisfying the proper radiation
conditions, and p is the radius (in the horizontal plane) from the source point to the {/eid point:
p=V(x—£2+@G-m?2.
Accordingly the potential can be written as:
¢(x .yt ) = exp (i wt )-(exp (—ik, x —ik,y) + f m (MG &k (y-—m)ikx)dn)

L

where m (7) is the dipole-strength along the slit. The coordinates (x.y). (£.m) are defined so
that £ and x are zero along the slit.

The inner expansion of the outer solution is now found as the limit of ¢ as x —0. This is simply
written as:

¢(x .y 2) — exp G wt )-{(1—ik, x Jexp (—ik,y ) — -§x— [ dnm (MH§? (kp)| g=x~o
— '3% [d 17 (COH §XKP) gax o) + O ().

Bringing into mind that M ¥ (icg) satisfies the equation:

(Bij; + g; +k2) H D (eg) = 0
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and that the contribution to the integral over 36;1{ _éz) only will g ve a contribution from the point
y = m we get:

(x.yt) - exp (i wt )-{exp (—ik,y ) + 2im (y )-ﬁ-'-—

+ x [—ik, exp (=ik,y ) + (-g; + kz)/‘m (MH P (k |y—n1)d /).
L

The matching.

The problem is now formulated in the two domains and the proper asymptotic expansions of the
two solutions in their respective extremes are found (i.e. the inner expansion of the outer solution
and the outer expansion of the inner solution). They both are in the same form.

We still have some unknowns to determine, namely: U(y;t) and C(y:t) from the inner problem and
m(y) from the outer problem. If we now apply the method of matched asymptotic expansions,

requiring that the two asymptotic expansions should be identical (for all values of y and t), we get
the following three equations:

Cly#) = exp G wt yexp =ik, y)

Uy 2) = exp G we I—ik, exp(—ik,y ) + (3% + k%) fm (H 2 (k 1y —n1)d )
and -

Uy)-5 = 2im(y) exp o).

By eliminating U(y:t) from these equations and neglecting the common factor exp (i w¢ ) the fol-
lowing integro-differential equation appears:

(5":—2 +k2){m('n)H62)(k y=nidn = 2m(y) 4 ik exp(—ik,y) .

This equation can be viewed upon as a second order differential equation in the integral given on
the left hand side, and the problem is thus reformulated (following Tuck /1/) as a wmixed
Volterra/Fredholm integral equation:

fm('n)Héz)(k ly-middn=f(y)+ A cos(ky) + B sin(ky)
L
where

. 2 .
fly)= %.fLm (sin (k Gy —)Md n + ;‘;—-exp (—ik,y)
7

where the ridge is assumed to be situated between y=-L/2 and y=+L/2. The two integration con-
stants, A and B, are determined from the condition that the dipole strength vanishes at both ends
of the ridge.

Since the integral equation is linear we can solve it for the three different right hand sides and con-
structs the general solution as:

m(y)=m,(y)+ Am,(y) + Bm3(y)
where A and B are determined from the boundary conditions:

m(——Lz-)=m(—€4)=0.

Once m(y) is determined the values of U(y:t) and C(y:t) are found. and the forces and moments
acting on the ridge can be found in addition to the wave elevation in the far field as:

Uxyt) = Re{—--i-ém—-exp G wt )-[exp (—ik, x —ik,y) + { m(n)G (k(y—kx)d 1]} .
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THE NUMERICAL SOLUTION OF THE INTEGRAL EQUATION.

The integral equation is solved by assuming the dipole strength to be piecewise constant. The
length of the ridge is divided into N segments, 5; = [m;.m; 1] where m=—§ and Ny 4= L The

dipole strength is assumed constant over each

poTe ment and the in 1 ion i
midpoint of each segment. seg tegral equation is collocated at the

The integrals involved are partly integrated analy ticall .

: ‘ y and by help of Gauss quadrature (afte
subtraction of th? singular part of the Bessel function). The numerical methodqwas tested agaix:s:
the problem leading to the solution: m(y)=y. The comparison for N=20 is shown in table 1. The
very good agreement is a justification for using the particular numerical scheme.

COMPARISON BETWEEN THE NUMERICAL SOLUTION OF THE
INTEGRAL EQUATION AND THE EXACT SOLUTION M(Y) =Y.

EXACT NUMERICAL
M(Y)=Y RE(M) IM(M)
-0.9938 -1.0004 0.00071
-0.9694 -0.9734 0.00023
-0.9210 -0.9247 0.00014
-0.8500 -0.8534 0.00010
-0.7581 -0.7611 0.00008
~-0.6475 -0.6501 0.00007
-0.5209 -0.5230 0.00006
-0.3815 ~0.3831 0.00006
-0.2327 -0.2337 0.00005
-0.0782 -0.0786 0.00003
a.0782 -0.0785 0.00001
0.2327 0.2337 -0.00001
0.3815 0.3830 ~0.00004
0.5209 0.5230 -0.00008
0.6474 0.6500 -0.00012
g.7581 0.7610 -0.00018
0.8500 0.8533 -0.00027
0.9210 0.9246 -0.00045
0.9694 0.9732 -0.00085
0.9938 0.9999 -0.00274
_T}Lble 1.
NUMERICAL RESULTS.

On figure 1 the wave elevation calculated from the far-field solution for incoming waves with nor-
mal incidence on a rectangular ridge is shown. The (color) plot shows a typical reduction in wave
amplitude on the lee-side with the smallest amplitude in the lobes originating from the ends of the
ridge. For normal incidence the relative wave amplitude is identically equal tq 1 qlong x=0. Since
there is a color change at this amplitude, the plot depicts an apparent discontinuity due to small
numerical errors.

.
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Discussion

You used cosine spacing to solve the integral equations. You
might do better if you also used "Chebychev" midpoints as
collocation points on the panel.

I used cosine spacing for the segment end points and real
midpoints as collocation points.

Is the apparent discontinuity at x = 0 real or a numerical
error?

I attribute the discrepancies to small numerical errors
causing an apparent discontinuity at x=0. This can be
explained by the fact that the wave amplitude for normal
incidence is unity at x=0 and the plot has a color change at
this wave amplitude.

What is the effect of oblique incidence?

The orientation of the lobes changes with the angle of
incidence.

Is shallow-water theory justified? We did a similiar problem
using elliptic coordinates. Our theory is not restricted to
shallow water.

I agree that the use of shallow-water theory is
questionable. We were looking for a fast solution, not
necessarily an accurate one.

Three theoretical methods have been used in parallel in
addition to experiments. This has been done because it is of
vital importance that the computations are correct.

Could you summarize the methods?

The methods are:

1) A variation of the so-called "mild slope equation",

2) A standard "panel" method,

3) and the method described in this lecture.

This third method is used to check the other two for simple
geometries.

I am interested in the experiments because I have a colleague
who is doing similiar problems (including a trench rather
than the mount or wall you are using). In particular we have
found that vortex formation and flow separation are
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important. I would appreciate it if you could comment on this
effect.

Flow separation is not considered to be important at least
not for the far-field behavior. This is confirmed by
comparing 3D inviscid calculations with experiments.

The inaccuracy mentioned by Nestegard is caused by end
effects since the details of the ends of the ridge have been
lost when applying the asymptotic matching method. Therefore,
an alternative approach, called the 3D-strip method may be
suggested to treat the ends of large curvature as 3D surfaces
and the midbody of small or no curvature by a 2D strip-like
discretization. These two concepts are combined to present a
3D-strip integral equation. Here, results for a submerged
rectangular cylinder 117 X 45 X 15m are displayed together
with experimental data and pure 3D computations, for three
floating rectangular cylinders of length to width ratios 1.0,
2.0 and 3.0. Good agreement can be observed.

Ref. X.J. Wu "A hybrid 3D-strip method for evaluating
surging coefficients of full-shaped ships" (7th Int. Conf. on
Boundary Element Method, Como, Italy, 1985)
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