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SUMMARY

The paper deals with the evaluation of the nonlinear hydrodynamic effects ari-
sing at oscillations of two-dimensional, arbitrarily shaped cylinders floating in or
being fully submerged under the free-surface and in response to a regular wave train.
The employed second-order potential theory is based on a regular perturbation expan-
sion in terms of small parameters and Green's function Integral-Equation-Method. The
resulting set of Fredholm Integral Equations, to be solved for the first-and second-
order potentials, is formulated as a Combined Helmholtz Integral Equation which is
free of irregularities. It employs pulsating dipoles and sources along the wetted bo-
dy surface, as well as at the body's origin, and sources along the free-surface at
rest, in case of second-order. .

In the present study special attention is paid to the solution of the second-
order diffraction problem and the calculation of the resulting second-order wave for-
ces acting on partially or fully submerged cylinders near under the free-surface. Re-
cent experimental results by Kyozuka and Inoue |1| and their comparisons with a simi-
lar theory indicated a strong disagreement between theory and experiments especially
for cylinders close to the free surface. However, in the present paper, it is shown
that the employed second-order theory and numerical procedure predict quite satisfac-
tory the measured first-and second-order wave forces, even for small depths of sub-
mergence, thus they prove to be a valuable tool towards better understanding of va-
rious nonlinear effects in ship motions.

STATEMENT OF THE PROBLEM

The mathematical modelling of the hydrodynamics of a cylinder, oscillating with
finite amplitude in response to a regular, possibly steep wave, has been describeq
in earlier publications |2|. Herein, the second-order diffraction problem for partial-
ly or fully submerged cylinders will be focussed.

Perturbation Expansion

The velocity potential describing the fluid motion resulting from the diffrac-
tion of a regular wave train of frequency w due to the presence of a cylinder can be
expressed as power series in the small parameters ¢, and €, in the sense of a regular
perturbation expansion: v
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with i,k=0,7. In (1) €, represents the wave steepness and €; the ratio.of the inci-
dent wave amplitude to the maximum half-beam of the body. Furthermore, index 0 per-

tains for wave and 7 for diffraction.

Rearrangiﬁg the incident wave (index 0), diffraction (index.7) and interaction
potentials (index 07) and considering, that e, =¢,-(kb), we obtain the combined wave-
diffraction potential (index 8):
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where k represents the wave number and b, the maximum half-beam of the body.
In (2) thepsecond-order wave potential w? has been omitted as being trivial in deep

water.
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The wave-diffraction potentials (pgl) resp. (p(az) can now be expressed as the sumof
a symmetrical (index 10) and an antisymmetrical (index 9) part, taken with respect
to the vertical symmetry axis of the body:

ol « o) gf! o = o 4 o2 a)
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Boundary Value Problems

The first-order potentials (pgl) and (p(,:) can be assumed to be known. The second-

order potentials ¢” and tp‘,zo’fgre given through the solution of the following uniform
boundary-value-problem for 05 (i=9,10){see sketch for the geometry of the BVP) :
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Herein v=w?/g means the frequency number and the index x a differentiation in the ho-
rizontal x direction.

Integral Equation Method

Applying Green's third theorem t.o the uniform BVP(4) the following Fredhoim In-
tegral Equation of second kind for ¢® (i=9,10), taken on the body surface §,, is
obtained: 1

(2)
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where the RHS IF]- is given by a Line-Integral over the free-surface Sg, namely:

1) =~ 1@ e a5y (7)
SF

Green's Function G(z) (P,Q), with P(x,y) being the field and Q(E,n) the source
point, satisfying the adjoint, homogeneous BVP(4), is given in |24 and will be glamt-
ted herein. However, in modification to |2|, for avoiding the well known irregu a: .
frequencies the conventional Green's Function is modified on the basis of the :o{t y
Ogilvie - Shin |3|. Herein, this idea is extended to integral equations of He]mtoizin
type, 1ike (6), being characterized by pulsating normal dipoles along S, and pertaining

~
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for the potential itself instead of for the source strength. Further the method has
been applied to both the first-and second-order subproblems for 9%’ and ¢ . The mo-
dified Green's function used is: i 1 1

5@ (p,0) = 6@ (p,0) «, {c,egz) +c,60% ) (8)
where . ‘

G((f) = 6 (p,0) - 6 (0,q) (9.1)
and '

6l = ¢, sign(z) - 6g) (P,0)+c,,-er(]2_) (P,0) (9.2)

.. It can be shown that the value of the constants C, to C, can be taken arbitra-
rily. A comparative study on analytical and numerical methods for treating the irre-
gularities problem has been published in [4].

Line Integral

2
The proper evaluation of the:free-surface line-integral 1%3 (7) is the most cri-
tical part in the solution of the second-order diffraction problem. Considering the
integrand in (7)

i) =1 @0 - g0, (10)

which has to be evaluated along the free-surface S., from its intersection with the
body side and up to infinity, the following must be stressed:

- In evaluating ng)(S) the first-order velocity potentials, as well as their first-
and second derivatives in x are required along Sg. They can be calculated from
@, given along S, and Sg, through andlytical formulas.

- The truncation procedure of fz’ at its upper limit, namely at a s?fficient large
djstance away from the body, "causes no serious problems, since 1;2 is well beha-
ving.

- At the lower limit of f?ﬁ namely the intersection of the body side with SF, the
following becomes critical:

1. The evaluation of’¢f”for nonvertical entrances of the body at the waterline,
e.g. for "wedge" or "bulb" type sections, causes some trouble. It can be mana-
ged sufficiently by the suggested Helmholtz Integral Equation Method.

2. The evaluation of ¢“’ and ¢'? requires special care. It can be shown the deri-
vatives of @‘Yto poSsess at**the intersection point nonintegrable singulari-
ties of the type 0(Z-b)~? resp. 0(Z-b)~? for Z=b. Besides an analytical treat-
ment for it, to be developed in the future, a practical way out of this mess
is to assign @'’ resp. mﬁi limiting values according to the hori;ontal veloci-
ty resp. convedtive acceleration of the body assuming no separation of the
fluid at the specific point. The employed formulds for ¢£’) and mi;) are :

(1) . cinaolt) (1)
0, ' = sinag ' + cosag, (11.1)
Toft) . (1), < (1) _ -1,(1)
0y, =cos2ao.’+ sin2a-(o, - 0.507 0o5’) (11.2)
where :
wgl) = Vsl)(s) : given normal velocity component of the body
ng) = g%- m(l)(s) : first derivative of w(l) along the arc-length s, eva-

luated numerically through a cubic spline procedure




H2 ¢(1) 3% ¢(1)(s) : second derivative of w(l)in s, evaluated numerically
sS 9s2 : ?

from o{1
S
(1) 22 oMy . g4 ivative of otl) :

s =35 (s) : first derivative of @, in s, evaluated numerically as

‘p(l)
S

a ‘ : flare angle of the section at the intersection point

(vert.:90°)

p= (xssys-yssxsf": sectional curvature at the intersection point

This procedure proved to be satisfactory, as judged from comparisons of calcu-
lated wave-diffraction forces with experimental data.

DISCUSSION OF RESULTS

In the present paper special attention is paid to the evaluation of second-order
wave forces acting on partially or fully submerged cylinders in waves. Besides some
systematic studies for varying cross section shapes, depth of submergence.and wave
frequency, given partly 1n |5| and in further reports of the author, herein only com-
parisons with recent experimental and theoretical data of Kyozuka and Inoue |[1] will
be commented. :

In Figs. 1 to 4, which are reprcduced from |1| with the results of the present
theory superimposed, the horizontal and vertical steady-state wave drift forcesacting
on submerging-emerging circular and rectangular cylinders are depicted. For the same
conditions the amplitudes of the second-order horizontal and vertical wave forces,
namely those oscillating with double the wave frequency, are shown in Figs.5-8. These
results are of particular importance, since they involve the proper evaluation of the
second-order diffraction problem, outlined before. :

The overall agreement of present theoretical-numerical results with the experi-
mental ones of |1| is quite satisfactory, though for depth of submergence to zero the

theory seems to fail. :
From the physical point of view it is of interest to note the dramatic increase

of the nonlinear effects, once a submerged cylinder approaches the free surface, and
the change in sign of the vertical drift force, from upwards ("suction effect") to
downwards ("squat"), once the cylinder pierces the free-surface. These results are of
particular interest when studying the motions of submarines and semi-submersibles in
waves.
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Fig. 2

Figs. 1-4 : Horizontal and Vertical Steady State Wave Forces Acting on Circ'ular and Rectangular Cylinders
as a Function of Submergence, Results after |1|, present calculations [J , A superimposed.
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Figs. 5-8 : Amplitudes of the Second-Order Wave Exciting Forces Acting Horizontally and Vertically on Circular and

Rectangular Cylinders as a Function of Submergence, Results after |1], present calculations [0, A superimposed.
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Discussion

In the diffraction case, how do you deal with the surface line
integral whose integrand does not tend to zero as x =+ « ?
The result should depend on where you truncate the integral
and it is not obvious where (within a cycle) the truncation
should be made. I question whether it is correct to impose an
outgoing radiation condition on the vertical closure in this
case, and suggest that the oscillatory surface line integral
might be balanced by an oscillatory contribution resulting
from the vertical closure.

As shown in the oral presentation (and in [5]) the integrand
of the line integral oscillates exactly harmonically a few
half-beams away from the body so its contribution becomes
zero. I have to truncate it but that is not a problem here.
Internally, the computer program checks the establishment of
an asymptotic behaviour through Haskind's relations.

A simple source technique has some advantages over more
complex methods. This is because the method generates the
solution on the free surface automatically and can be used in
second-order problems.

I agree. I wish I had known of your method as I started
building up my computer program approximately a decade ago. I
have to add that the integral-equation method (pulsating
sources and dipoles at the body surface, internal source and
dipole at the origin and, for the second-order, pulsating
sources of known strength at the free surface) works well and
is free of irregularities, even for the second-order
formulations. I also applied it successfully to extremely
flared cross sections. To my knowledge, Kyozuka uses your
method at first-order. However, at second-order, he does not
solve directly for the second-order velocity potential but
employs a line integral to infinity, taken over the
free-surface inhomogeneity, to calculate the second-order
forces (Soding's 1976 approach).

A student of mine, J.R. Thomas, in his Ph.D. thesis, looked at
mean vertical second order forces on a submerged circular
cylinder which was moored by flexible cables. The work was
relevant to a wave-energy device being developed at that time.
He found that in contrast to the fixed or vertically buoyant
free cylinder, the mean vertical force was not always upwards
in the constrained case but could at certain frequencies be
downwards.

In the case of fully submerged circular cylinders in potential
flow, Ogilvie (1963) provided analytical expressions for the
mean second-order forces in regular waves. In the diffraction
case the horizontal drift is trivially zero whereas the




vertical drift is non-zero and directed upwards for shallow
submergence and goes to zero for deep submergence. In the
case of a freely moving cylinder the results are qualitatively
the same, but in no case is the mean vertical force directed
downwards. My numerical results could have changed the
resulting first-order motions so that the resultant mean
vertical force becomes downwards. Of course, in the free
floating cylinder case the vertical force can be positive or
negative depending on the frequency [2].

135




