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It is well-known that single-phase flow through porous
media 1s governed by Darcy's law, i.e, fluid velocity is
proportional to pressure gradient. Mass conservation then
leads to a potential flow problem. Of interest to oil pro-
duction is the case where one liquid is used to push another
out of a porous oil-bearing formation or "reservoir." Real-
istically this is a two-phase flow problem where the driving
and driven fluids are intimately mixed on the pore level.
However, a useful idealization is to assume that the fluids
are immiscible and that the microscopic displacement process
is complete. This leads to two potential-flow domains sepa-
rated by a moving boundary, the time evolution of which
needs to be determined as part of the solution. While for-
mally a viscous creeping flow, it is mathematically analo-
gous to inviscid free-surface and interfacial wave problems
and also to flows resulting from the Rayleigh-Taylor insta-
bility.

Of greatest interest is the case where the pusher fluid
is the less viscous of the two. The fluid interface is then
unstable to small perEurbations. Often called the
Saffman-Taylor instability~, the resulting flow exhibits
viscous "fingers" where the protrusions of the driving lig-
uid grow without limit. When viewed on a macroscopic scale,
much of the driven fluid is bypassed by the moving front,
leading to reduced values of "sweep efficiency.”

A Hele-Shaw cell, consisting of two glass plates sepa-
rated by a small uniform distance, is an experimental device
used to visualize these unstable displacements. In a rec-
tilinear channel a single dominant finger forms and, at suf-
ficiently 1low flow rates, may be observed to propagate
without change of form. Techniques developed for the calcu-
lation of steady-state finite-amplitude Stokes waves have
recently been implemented to find the shape of these
fingers. The standard idealization neglects the wetting
layer of the driven fluid left behind on the walls of the
device and averages the flow properties in the direction
perpendicular to the plates. The resulting potential flow
problem is two-dimensional. The viscous contribution to the
normal stress balance on the interface is neglected; thus
the pressure jump across the interface is given as the prod-
uct of the interfacial tension and the curvature. Because
the differential system 1is second-order, the tangential
stress balance and the side-wall no-slip conditions must be
abandoned. For a given initial interface shape, cell geom-
etry and viscosity ratio, the time-dependent problem uti-
lizes the standard kinematic boundary condition to advance
the moving boundary. Only a single dimensionless parameter
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governs the subsequent motion, the ratio of viscous to sur-
face tension forces, 1i.e. a capillary number. Within the
porous-medium flow community, this system, including the
above boundary conditions, 1is usually referred to as the
Hele-Shaw equations.

Several flow geometries have been considered2'3’4. As
an example, we will state the problem that has been treated
most extensively, that of fingering in a rectilinear channel
when the pusher fluid is taken to be inviscid. Darcy's law

takes the form

v = -MVp (1)

M = b%/(12u)

where Db is the plate spacing and u is the liquid viscosity.
Assuming the 1liquid to be incompressible, the continuity

equation is

Vev = 0 - (2)
Combining the two equations, we obtain Laplace's equation

for the pressure in the liquid:

V2p =0 - (3)

On the interface we have

QFL
nio

p(x,y) = o , (x,y) e 3R~ (4a)

where s is the arc length and 9 is surface inclination. On
the moving interface R the kinematic boundary condition,
that a particle on this boundary remain on the boundary for
all time, must also be satisfied. Restated, this condition
is that the normal component of fluid velocity, with carte-
sian components (u,v), of a particle occupying a point on
the surface, is equal to the normal component of the surface

velocity (x ) at that point. Thus

t ¥t

(u,v)n = (x

t,yt)-H, (x,y) e 3R (4b)

where n is a normal vector to 3R and subscripts signify time
differentiation. Because Hele-Shaw flow 1is a subset of




creeping motion, inertial contributions to the interface
motion are neglected and surface velocity components found
by solving (3), at each instant of time, yield the instanta-
neous surface motion according to (4b).

On the side walls of the cell, the normal component of

fluid velocity is zero, i.e.

Lo

ox 7 X = i‘L/2 M (5)

At upstream infinity, we assume constant velocity,
wp - & 7 y o (6)

where Q is the volumetric flow rate into the channel and
y is a unit vector in the direction of increasing y.

We have solved this system numerically, using a
boundary- integral technique to treat the imbedded linear
problem. Time integration 1is done implicitly. Methods
involving both distributed sources and distributed vorticity
have been developed and each has certain advantages. The
scheme is essentially Lagrangian and a key feature involves
periodic redistribution of the boundary nodes. For a rec-
tilinear channel, a slightly-perturbed interface evolves
into a steady-state propagating finger, in gualitative
agreement with experimental results. Previous stability
analyses, suggesting that these fingers, if formed, should
be wunstable, can be understood by recognizing that, while
certain small disturbances can be found that will grow ini-
tially, ultimately they are "left behind" by the moving fin-
ger and will decay.

When the viscosity ratio is unfavorable, it can be shown
that the problem without surface tension is ill-posed in the
sense that large wavenumber disturbances grow most rapidly.
Because the effective surface tension force is very small in
laboratory-scale flows (and even smaller when oil-field
dimensions are considered), results are critically sensitive
to the ambient level of "noise." Thus we have included a
second parameter in the model to represent the noise level.
In Hele-Shaw cell experiments this noise may arise via
imperfections in the device or vibrations in the
environment. Since no actual porous medium is totally homo-
geneous, noise in porous media flows may be igentified with
local permeability variations. Computations” reveal that,
for a given value of capillary number, there is a critical
noise level. When this critical level is exceeded, the dis-
placement front becomes jagged, with many side branches.
Such flows have recently been observed experimentally, in
linear Hele-Shaw cells at relatively large capillary number,
and are similar in form to results of the simulation. 1In
other geometries, where "flooding" patterns are modelled by
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a discrete combination of sources and sinks4, the
noise-induced side branching 1leads to reduced values of
breakthrough sweep efficiency, i.e. the portion of the res-
ervoir contacted prior to the pusher fluid reaching a sink.
Even when no noise is introduced into the computations, the
specific details of the fingering patterns are strongly sen-
sitive to the initial conditions; the large subsequent mag-
nification of disturbances arises because the problem is
"almost ill-posed" when the capillary number is large.

Results have recently been extended to finite values of
viscosity ratio. As the pusher viscosity is increased,
sweep efficiency will also increase. Partly this is due to
the fact that fingers fatten with increased pusher
viscosity. A more important effect, however, is the large
increase in critical noise amplitude. Thus, for a given
value of spatial permeability variation, the ratio of vis-
cosities will determine whether or not the displacement
front will break up into a tree-like structure.

While the time-dependent solutions of the Hele-Shaw
equations, with noise, reproduce the qualitative features
observed in experiments, the numerical value of the width of
a steadily propagating finger in a straight channel is con-
sistently underestimated. This has been conjectured to be
due to the neglect of the additional interface pressure jump
associated with the residual layer of displaced liquid left
behind o) the cell walls. An asymptotic result of
Bretherton™ predicts the magnitude of this effect. By
altering the numerical algorithm so that this correction can
be applied 1locally, as an "inner solution", a good match
with the available data is obtained. Because this added
pressure Jjump depends on the local value of speed at each
point on the front, the imbedded potential problem becomes
nonlinear; it can, however, be treated successfully using
Newton iteration.
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Discussion

What are the nonlinear effects?

The problem is nonlinear solely because we trace the
interface evolution to large amplitude. When the
wetting-layer effect is included, even the embedded
boundary-integral problem becomes nonlinear.

Have you or others tried to apply fractal ideas to your
results? Do they get a straight line for the lag (length) to
lag (yard-stick) relation?

I do not have enough fine-scale structure in my results to
date. In the diffusion limited aggregation (DLA) model, they
do get a power law relation for the boundary length. However
the DLA model needs to be justified since we are treating a
hydrodynamics problem,

I should like you to expand upon the role of the second
(thickness-wise) component of curvature, which is dominant,
and may not be constant.

In the primitive model, the curvature between the plates,
while very large, is assumed to be strictly constant. If this
curvature is not quite constant, an order-one correction needs
to be introduced. Using the nonlinear pressure-velocity
relation locally on the moving interface does produce a large
change in the profile shape.

Did you use constant panels? It is my experience that
plecewise-constant function values are not effective.
Consider a rectangular box of fluid. On the left and

right walls, let ¢x = 1, and on the top and bottom let
@= x. So the solution is Q§= x. Now use Green's

theorem to solve the same problem with constant panels.
Near the corners a constant variation in potential cannot
approximate a linear gradient. A spurious singularity is
introduced (in addition to other weaker singularities) as a
result of our approximation. Now consider a standing wave
solution (¢5= e*cosx) near a corner which is not a right
angle. Because of our constant panel assumption, the
water-particle velocity is zero in three different directions.
This too is a singularity. However, panels using linear
variations of ¢ make both singularities weaker or may
eliminate them altogether.

The source strength was piecewise constant. Because of
capillarity, we do not have sharp corners.
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Concerning the basic equations, you said the boundary is not
sharp. What does that mean?

I consider a boundary to be sharp when the characteristic
thickness of the front, i.e., the transition region between
the two asymptotic values of residual saturation, is much
smaller than the inter-well distance for example. Both sharp
and diffuse boundaries can be found in practice. At full
scale, there is little data, because of the large expense
involved in drilling extra holes, i.e., observation wells.

You used a random perturbation on the interphase coordinates
to simulate an inhomogenous medium. Have you considered
using a variable (or indeed stochastic) coefficient in your
Darcy's law formulation?

In our model, the interface is quite sharp. The boundary
integral formulation would loose most of its power if
inhomogeneity strictly within the fluid domain were
important. Fortunately, it can be argued that the greatest
effect of permeability variation is at the moving interface.

If you consider the single-phase flow through an artificial
packed bed composed of spheres, say, you will find convective
instabilities, similar to vortex shedding past a single
sphere, being propagated through the porous media. These
packets of vorticity will appear as randomly distributed
disturbances within the medium. The initiation of these
disturbances is Reynolds-number dependent and has been
measured by LDA. The change in the basic state of the flow
can be inferred from heat-transfer measurements. Such
experiments have been carried out by Dybbs and Edwards at
Case Western.

Can you distinguish whether oil is of mineral or biological
origin?

I have been told that oil's immediate precursor is keragen,
the hydrocarbon component found in oil-shale, for example.

It is still an open question as to the original process of
0oil formation. Regardless of the process of formation, in
order for hydrocarbons to be produced, we still need a
reservoir with cor-rock.




