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ABSTRACT

Waves can be generated by elongated bodies in a variety of physical
contexts. A ship forced to oscillate on a free surface, a wavequide
vibrating in an acoustic medium and a high-aspect ratio lifting surface
shedding a wave-like vortex sheet when forced in time-harmonic motion,
offer three diverse examples. In all three problems a wavelength can be
identified which . may be comparable to the body transverse or its
longitudinal dimension. Slender-body approximations for the first two
problems for wavelengths ranging from the transverse geometry scale to
the infinite wavelength limit have been obtained by using the techniques
of unified theory developed by Newman (1978). The present talk studies
the latter of the three problems within the same framework and presents
a solution also uniformly valid for wake~wavelengths that range from the
chord to the infinite wavelength limit which is Prandtl's lifting-line
theory. Possible applications of interest in surface-wave body
interactions are in the design of hydrofoil-boats advancing in waves or
in the evaluation of the lift and drag experienced by sailboat keels.

A plane high-aspect ratio wing advancing at a forward speed U and
forced to oscillate at a frequency ® sheds a wake on which the bound-
vorticity strength oscillates in the direction of advance with a
characteristic wavelength A = 2MU/ W . In light of the equivalence of
vortex and dipole representations, at distances large compared to the
wing span the flow can be approximated by a distribution of dipoles
normal to the mean wake position, assumed to be plane, with moment
slowly varying in the direction of the span and sinusoidal with
wavelength A in the direction of the forward motion.

Information about the flow variation near the wing axis (assumed to
coincide with the x-axis), is revealed by expanding the far—field
representation outlined in the preceding paragraph for small values of
the transverse radial distance R from the wing axis. Uniformity of this
expansion is first desired with respect to the x-coordinate. In unified
theory, this is accomplished via a "factorization" of the x-dependence
of the far-field solution by Fourier transforming it with respect the
the x—coordinate. This operation effectively reduces the dimension of
the problem, since the Fourier transform of the velocity potential
satisfies a two—dimensional modified Helmholtz equation on planes normal
to the x—axis which depends on the real Fourier wavenumber k.

The derivation of a small-R expansion of the transformed potential
ig no trivial exercise in general. For a distribution of free-surface
wave sources on the axis of a ship forced to oscillate in a time-
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harmonic manner, Ursell (1962) derived a convergent ascending series
expansion in terms of modified Bessel functions of the first and second
kind which are known to be solutions of the modified Helmholtz equation.
For a body vibrating in an acoustic medium the corresponding expansion
is easier to derive. Ultimately these expansions are transformed back
into the physical x—space. Uniformity with respect to the x-~coordinate
is ensured by requiring that the Fourier wavenumber k is a quantity of
0(1) for small values of R. Uniformity with respect to the physical
wavenumber V = W/U is more subtle. It rests with our ability to ensure
that the series expansion is convergent.

Conventional matched-asymptotic—expansions theory for flows around
slender bodies derives far- and near-field expansions by idendifying the
disparity of the two geometrical length scales and relating the
wavelength in an asymptotic sense to one of them. This methodology
permits a systematic construction of a sequence of far and near
solutions in increasing powers of the small parameter ¢ which measures
the ratio of the two geometry scales, but inevitably restricts the
magnitude of the wavenumber. Their compatibilty is enforced in an
appropriately defined intermediate regime. A comprehensive account of
this technique for a wide class of problems in fluid mechanics is given
by Van Dyke (1964).

Unified theory adopts a different philosophy. The approximations
are derived to leading-order in § , but the wavelength is assumed to be
asymptotically unconstrained. It turns out that in deriving the
near-field expansion of the far—field solution the latter requirement
can be honored only if the small-R expansion of the far-field solution
is a convergent series which is not truncated after a finite number of
terms. This can be justified as follows. The asymptotic mathcing of the
far—- and near-field solutions is carried out in a "matching" region the
transverse distance of which form the origin R=0 decreases in the
asymptotic limit &€+0. It is at such "small" values of R that the
expansion of the far-field solution sgolution will be utilized. It would
thus appear sufficient to truncate it after a finite number of terms.
The variation of the inner expansion over distances comparable to the
radius R of the matching region depends on the relative order of the
waveleng%h A toR . IfR <) as £+0, then a finite number of terms
would be sufficient in th® inner expansion. If on the other hand the
asymptotic theory is expected to be uniformly valid up to wavelengths
comparable to the body transverse dimension (for example the beam of a
ship, here the chord of the wing), then in the limit &0, R »» ) since
the mathcing region is "far" from the near field which is of comparable
extent to the transverse geometry scale. In the latter case, all terms
are needed in the ascending series expansion of the far—field flow in
order to describe the rapid flow variation over distances which range
from R=0 to Rm.

If all terms are kept in the series it is of course impossible to
approximate the far—field solution near the body axis. Progress is
possible by requiring that the leading-order term in the inner
approximation of the far-field solution is a solution of the two-—
dimensional Laplace equation which is expected to be relevant in the
near field. The observation that for a zero value of the Fourier
wavenumber k the modified Helmholtz equation reduces to the two-




dimensional Laplace equation suggests that the leading-order term in the
inner expansion of the outer solution must be the k=0 limit of its
ascending series expansion. This is a function of the transverse (y,z)
coordinates and consists of an infinite number of terms, needed to
preserve uniformity with respect to the physical wavenumber. The next-
order term depends on k and consequently accounts for hydrodynamic
interactions in the direction of the body axis, since when transformed
back in the physical x-space, k-dependent terms are synonymous to
variation in the x—direction. Formally, it can be obtained as the first
term in the Taylor series expansion for small R of the difference of the
exact ascending series minus its k=0 limit.

A convergent ascending series in R has been derived for the
far-field flow due to a dipole distribution on the wake of the lifting
surface in a form that formally resembles to the series derived by
Ursell for the ship problem. Their k=0 limit is the exact velocity
potential due to a two-dimensional point vortex at R=0 forced to
oscillate at a frequency @ in the presence of a uniform stream U. The
next—-order term which accounts for the spanwise variation of the flow
turns out to be the product of a function which depends on k, times the
vertical spatial coordinate y. When transformed back in the x—-space, the
resulting velocity potential represents an induced vertical velocity
("downwash") which varies gradually along the spanwise direction. For
large values of the frequency of oscillation it tends to zero and in the
limit of infinitely long waves, or zero frequency, it is identical to
the downwash presdicted by the Prandtl lifting-line theroy.

The two—term inner expansion of the far-field velocity potential
supplies sufficient information for the formulation of the near-field
flow. The downwash induced in the near field by the far—field flow leads
to an effective change in the local angle of attack at each transverse
section of the lifting surface. The local circulation is thus obtained
by solving a sequence of purely two-dimensional oscillatory lifting
problems at angles of attack which vary in the direction of the span.
The result is an integro-differential equation for the spanwise
distribution of circulation which is uniformly valid for wavelengths
which range from the chord to the infinite-wavelength limit. In the
limit of high frequency of oscillation the induced downwash tends to
zero and the problem reduces to the solution of a sequence of non-
intercating two—dimensional problems. In the opposite limit of
infinitely low frequency the integral equation reduces to that obtained
by Prandtl in his lifting-line theory.

Computations are presented of the lift and mean drag obtained by the
present theory over the whole frequency and aspect-ratio range. The
integro—diffrential equation is solved by approximating the distribution
of circulation along the span in a sine series, as is often done in
the solution of the lifting-line equation. Comparisons are made with
predictions obtained from an independent three-dimensional lifting-
surface computer program which has been developed for lifting surfaces
of general planform and aspect ratio. The problem is solved in the time
domain with the lifting surface forced in a time—harmonic vertical
oscillation initiated at t=0. The transient 1lift and drag are frequency
analysed for a sufficiently large duration of forward advance, which
permits the evaluation of their frequency-domain modulus and phase.
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Discussion

Lifting-line theory assumes that the induced velocity on the
wake itself is of higher order. When oscillations occur is
this still a good assumption? Does your numerical theory
account for this effect?

The wake in the present study is convected by the velocity U
only, not by the perturbation velocity. We do mot account
for wake roll-up. The numerical solution by Lee was done in
the time domain. The wake vorticity induced a normal velocity
on the foil, but not on itself.

So there is no roll-up?

The wake vorticity was assumed to be in a plane. The roll-up
was neglected.

Recently Daniel Weihs and Joseph Katz considered the problem
of vortex shedding and the effects of the velocity of their
transport. They dealt with two typical cases by assuming
that the shed vorticity is transported with the free-stream
velocity or that it is transported with the induced velocity.
Little difference on the net result of the 1lift was observed.
My question is how many elements were used in your vortex
lattice method?

The vortex lattice method used a 4 X 8 lattice, 8 chordwise,
4 along half the span.

You quoted some previous publications that possess
singularities in some limits. Can you identify how unified
theory improves upon these theories by eliminating the terms
that blow up?

There are two principal differences between unified theory
and previous theories:

i) We start with a distribution of dipoles on the wake as
opposed to an equivalent distribution over the foil which is
relevant when the acceleration potential is used.

ii) The leading-order term in the inner expansion of the
outer solution is taken to be the exact velocity potential of
a two-dimensional time-harmonic vortex. Previous
low-frequency theories include only a few terms in its Taylor
series expansion for small frequencies, thus preventing their
uniform validity across the frequency spectrum.
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