193
APPEARANCE AND DISAPPEARANCE OF IRREGULAR FREQUENCIES

IN WAVE-STRUCTURE INTERACTION PROBLEMS

by
. . * t
Xiong-Jian Wu and W. G. Price

* Ship Hydrodynamics Laboratory, Shanghai Jiao-Tong University, China;
presently at Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K.

t Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K.

1. Introduction

When a singularity distribution method analysis is applied to a free
surface piercing body floating or fixed in a seaway, the integral equa-
tion governing the wave-structure interaction fails to produce correct
solutions at an infinite number of irregular frequencies(l). This mathe-
matical failure will be serious when hydrodynamic analysis in a higher
frequency range is required, or a multi-hull or body system is investiga-
ted when the resonant wave effect(2) and the irregular frequency influence
may occur together. Both the mathematical failure and physical resonant
wave phenomenon induce rapid variation in the calculated hydrodynamic
coefficients causing the integral formulation to be ill-conditioned. In
a numerical analysis, it is difficult to distinguish which induced rapid
variation in the numerical results is due to the physical resonance and
which is due to the irregular frequency. Furthermore, when the irregular
frequency bandwidth partially or totally overlaps that of a resonant wave
mode, the latter will be affected.

Efforts have been expended to remove the irregular frequency effect,

and some remedies have been proposed. These range from the imposition

of a 1lid on the interior surface to suppress the interior resonance (3)

to one which distributes an additional source on the interior free sur-
face of the body, as in Ogilvie and Shin's(4) modified Green's function
approach. By extending Ursell's(5) mathematical solution to describe the
high frequency oscillatory problem, Ogilvie and Shin proposed a symmetric
and an asymmetric Green's function to eliminate the irregular frequencies.

Their symmetric form is only effective for a symmetric section
geometry oscillating in a symmetric mode of motion. This form was
extended by Sayer(6) to the case of finite water depth, and then by
Ursell(7) who presented a modified Green's function in a multipole
expansion form. Martin(8) introduced a null-field equation method which
was recently applied to a catamaran form(9). A compxehensive numerical
investigation has been conducted by Takagi et al(l0) who concluded that
some elegant mathematical theories initially developed for simple shapes




194

]
produce poor numerical results when applied to some more realistic
or more complicated geometric structures, whereas Ogilvie and Shin's
asymmetric Green's function form proved to be very effective.

Recently, Sclavounos(ll) introduced a combined integral equation.
method to eliminate the irregular frequencies and applied this technique
to 2D circular and rectangular sections.

In parallel to recent developments, extensive studies have been
carried out by the authors focussing efforts: on

(1) the prediction of the irregular frequencies for an arbitrarily
shaped geometry since they are so far still unknown a priori
to numerical computation;

(ii) a modified Green's function approach to eliminate the occur-

rence of irreqgular frequencies in mono, twin and multi-hull
structures.

These investigations resulted in a prediction technique and a multiple
Green's function method being proposed which are now briefly described.

2., Prediction of irregular frequencies

The predicted value at which irregular frequencies occur are usually
quoted only for very simple geometries, i.e. a rectangular section, and
a vertical circular cylinder. The authors have extended this information
by exact analytical formulations to predict the occurrence of irregular
frequencies in a triangle(l2), a triangular cylinder and a sector of a
circular cylinder(13). Further, by using the known expressions for a
rectangular section the irregular frequencies are predicted in an
arbitrary body section by introducing an equivalent rectangle assumption
(12). That is,"the irregular frequencies in an arbitrarily-shaped 2D
section are equal to those of an equivalent rectangle of an equal
sectional area (AS) with equivalent beam (Be) and draft (he) "

The equivalent rectangle formulation is given as

w, o= {gk coth (kh) };’ :
mm (1]
=5 v form=1, 2, ...
e
where wm is the mth irregular frequency and
e’ - A

Be = (c.s) B , he As/Be

where C_ = A_/Bh is the cross-section coefficient, B is the beam (on the

waterline) 8nd h is the draft measured from the midpoint of the beam.
o is an empirical correction coefficient and the recommended value is
o = (1+2nm) /8.

A parallel technique for 3D bodies, referred to‘as the equivalent
box approximation(13), has produced the equivalent box formulation of

W {gk coth(kh )
k ™ 2)2 4 (2 2} for p=1,2,... and m=1,2,...,
{E&)+ (&)

(2]
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and o, = 2 ,
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where V is the displacement volume, C_ = A /LB, C_ = A /Bh,

C =A /Lh

are the waterplane, the midsection and the"central long?tudinalcsectgon
coefficients with A , A and A the relevant plane areas. The correction

. W.
coefficients are assumed expressed as

L-B

Co = 3/4, Cl = {l+6| ~——| 2n(p)}/8 and c2 = {1+6 IEZEW 2n(m) }/8 .

L+B

L+B

In their limiting cases, equations [1] and [2] provide the exact solutions
for a rectangle or a box respectively, otherwise they represent approximate
solutions of high accuracy. The irregular frequencies occurring in a multi-

hulled structure may be approximately the sum of those of each individual

sub~hull.

3. A multiple Green's function

By extending Ogilvie and Shin's asymmetric Green's function form
(4,10,12) a procedure has been developed(l4) to derive a multiple Green's

function expression given by

- - - N ~ -
G*(PsqrPysPyse-+sPy) = G (pr@) + L G (psaspy) s
=1

[3]

where p=(y,2), q=(n,C) are two points on the sectional contour,

p. = (¥.,0) (for j=1,2,...,N) is an arbitrary point on the body interior
fgee sutface. Go is the ordinary Green function, in deep water expressed
as

2 2
G =2 [(y-n). * (2-%) ]+ I, +41, ,

° 2 (y-m* + (z+D) ! 2
© o K(Z+5)
Il = 2} v cos U (y-n) du ,
: o
1. =-27 e () cos v (y-1),

2
whilst E is the additional Green's function written as

Ve =iv|n-y,| %

<1
e

G (p.q.ﬁj) =e

¢y, Son (n—§j) (g—ﬁ) 2:

2 \3)

. where v = %r is the wave number.

[4]

[5]

The integer N relates to the multi-hull body with N separate hulls and
§j is located on the interior free surface of the jth sub-hull (body).

For a single-hull body N=1, when § = 0, the multiple Green's function

form reduces to that proposed by Ogilvie and Shin.
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4. Numerical Results

Reasoning and detailed numerical verification of the equivalent
rectangle and box formulations are to appear in references 12 and 13.
Because of its simple and explicit form the interested reader can readily
obtain the irregular frequencies for an arbitrary body gecmetry. For
example for the illustrated section at station 16 of a ship form with
B/h = 2,17, A /Bh * 0.7, the predicted irregular frequencies are
w vB/2g = 1. 43%and 1. 86, practically coinciding with the irreqular
frequenc1es found in numerical calculations at 1.43 and 1.89 .(see Figure 1).

To verify the multiple Green's function formulation, an example of a twin
hull body consisting of a rectangular hull and a triangular hull is chosen.
Calculations of the hydrodynamic coefficients by the authors' program
(1983) based on an ordinary source-dipole method are given in Figure 2
and by a modified program (1984) by means of the present multiple
Green's function, equations [3]—[5 , are shown in Figure 3.

In figure 2 the singular phenomenon occur around three frequencies,
whereas in Figure 3 only the resonant wave effect remains. Because of the
new formulation the other two singular behaviours due to irregular frequency
now disappear.

5. Conclusions

By means of the present formulations irregular frequencies for an
arbitrary body geometry can be determined by the proposed relationships
and the present multiple Green's function technique is capable of
removing the irregular frequency influence but allows the wave resonant
effects to remain. Therefore one can simply ignore numerical calculations
around these predicted irregular frequencies, or alternatively, use a
conventional singularity method up to the frequency region of the first
predicted irregular frequency and then continue and extend the computation
by introducing the multiple Green's function method up to the frequency
required. '
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Discussion

Have you done calculations for 3-D bodies with a length/beam
ratio about 3-47

Have you tried to find a method similar to Ogilvie-Shin in 3D?

Yes, I tried. 1In the 3D case I found that Shin's modified
formulation in his PhD thesis might not work. I have extended
our 2D multiple Green's function expression to the 3D case and
derived several possible versions. However, I will not adopt
and publish a formula before extensive studies to verify its
applicability. In my experience, I found that sometimes some
elegantly derived formulations may be accurate mathematically
but not necessarily accurate numerically, limited in
applications to some particular cases or well defined idealized
shapes rather than general cases, or theoretically incorrect. In
the present stage, my tentative 3D results were not stable. This
may be caused by either incorrect derivation or most possibly by
errors in modifying a large computer program due to the
inclusion of a modified 3D Green's function.

Would you clarify the difference between what you proposed and
the approach of Ogilvie-Shin?

Ursell derived a modified Green's function for high-frequency
problems. This was extended by Ogilvie and Shin for solving
irregular frequencies in a single hull case. Our contribution
is to extend and generalize Ogilvie and Shin's expression to
derive a multiple Green's function expression capable of
removing irregular frequencies in a mono-, twin- or multi-hull
body (system). 1In our formulation, each surface-piercing
subhull has an additional singularity located somewhere on the
interior free surface.

If it is important to identify the irregular frequencies
accurately presumably one could use the powerful variational
techniques for sloshing frequencies in arbitrary containers.
Although the condition is ¢ = 0 here rather than ¢, = O the
methods should go over.

Of course, many methods can be used to yield irregular
frequency values. But any of them may take considerable
computing time and may not produce more information. This may
be why in practical computation, no one has so far adopted a
separate program to determine the irregular frequencies and
then performed the hydrodynamic analysis using a
singularity-method program. Our formulas, however, give
accurate approximations of the irregular frequency values as
well as explicit rules for the distribution and appearance of
these irregular frequency influences (see Ref. 12 and 13) with
very little computing effort. 1In fact, you can finish the
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calculation by calculator in a few minutes. These formulas
have been implemented in my programs and proved to be accurate
and efficient in practical ship and offshore applications.
Generally speaking, alternative methods can be applied without
the trouble of irregular frequency, such as the finite element
method, Bai and Yeung's hybrid method, Ursell's multipole
expansion method, etc. For deep water marine applicatons
involving complicated body geometry, especially for 3D cases,
singularity distribution techniques may be more suitable.
Furthermore, I believe that the tendency of the further
development of the 2D simplification is towards a 3D-2D
combination concept (Ref. X.J. Wu, 7th Intl. Conf. Boundary
Element Method, Sept. 1985). Since the most popular method in
3D analysis is the singularity approach for compatibility, it
may be appropriate to use a singularity technique in the
relevant 2D case as well.




