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ABSTRACT

A numerical model of high amplitude waves is formulated by using the
Boundary Integral Method. Emphasis is made on the assumptions to simplify time
marching technique. Further extension of the method onto three-dimensional
application is possible since only real variables are involved. A two-
dimensional spatially periodic breaking wave at finite water depth is given here

as an example.

INTRODUCTION

A numerical technique was developed by Longuet-Higgins and Cokelet in 1976
to simulate a spatially periodic two-—dimensional breaking wave at finite water
depth. This solution was obtained by solving a boundary integral equation
written in terms of complex variables. A mixed Eulerian and Lagrangian form was
used to follow the wave's position in space and time to avoid the non-linearity
and strong time dependence of the solution due to the free-surface boundary .
conditions. Later on, Vinje and Brevig (1982) have extended the method to
two~dimensional ship motions on large amplitude waves. However, the extension of
the method to three-dimensional problems is restricted by the characteristic of
the complex variable which is a strictly two-dimensional solution method. The
following work develops a solution method that is parallel to the method of
Longuet-Higgins but can be extended to three—~dimensional applications with

necessary modifications.

MATHEMATICAL FORMULATION

Figure 1 shows the numerical model of a spatially periodic wave at finite
water depth. The model is at exactly one wave-length so that the velocity and
the potential value on S. is equal to those on S;. The bottom of the model can
be replaced by a mirror image line so that the number of unknowns can be reduced
for a more efficient computation. The combined free-surface boundary condition

is given as:
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where 6 is the angle of the wave slope, —%f— is the material derivative, and

V= (u,v).
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A finite difference formulation is used to represent the material

derivatives in order to march the solutions in time.

terms in equation (1) are expressed in the following form:
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where u' and _%E_'( |V F)' are obtained by a second order extrapolation from
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The material derivative

previous determined values and the superscript indicates the exact moment where

the solution is computed.

equation can be obtained:
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Substituting equation (2) into (1), the following
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The most general form of the Boundary Integral Equation is given as:
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where G is the Green's function defined by point P and Q.
point of interest and point Q being the control point on the boundary.
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equation (3) substituted into (4) and the spatially periodicity assumption,
equation (4) can be rearranged into the following matrix system:
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the number of elements on S_. + Sg+ S!'. Details of the derivation of equation (4)
can be found in Calisal, Chan, Rohling (1986).

RESULTS AND DISCUSSION

Figure 7 presents the deformation of high amplitude waves with various
initial wave heights. The water depth to wave length ratio is 0.1 while the time
increment is 0.0l sec. 60 elements are used to represent the wave profile.
Initial condition is calculated by using linear theory. For wave height to
length ratio equal to 0.1, a spilling breaking wave is formed at 1.25 sec.
Further increase the wave height to length ratio to 0.125 and 0.15, the waves
will deform into the plunging breaking mode at a much shorter time.

From this result, one can see that the use of finite difference
representations on the material derivative terms and the extrapolation values for
the non-linear terms- do provide a convenient numerical technique for the two-
dimensional non-linear free surface wave simulations. The assumptions used
permit a solution marching in time without using any iterations and corrections.
No smoothing technique other than a second order interpolation is used to compute
the tangential velocity on the boundary. Numerical stability of the model can be
fulfilled provided the value of a non-dimensional number, K, is maintained under
0.50. K is computed by taking the product of the phase velocity and the time
step, and dividing by the element length. This non-dimensional number is thought
to be associated with the information from travelling a distance larger than the

element length per time step.

One final point to be emphasized here is that the presented method consists
of real variables only. By including a second angle, a, the numerical method can
be extended to three-dimensional applications. Although the three-dimensional
studies have not been investigated here, no major difficulties are foreseen to
limit the modelling of a three-dimensional problem.
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Figure 1 The schematic diagram of the non-linear modelling
of a high amplitude wave
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