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A submerged body interacting with surface waves experiences a vertical “suction” drift force which
tends to decrease its submergence. The same drift force may cause a large vertical mean displace-
ment of a floating body with small waterplane area, a semi-submersible offshore platform or a
twin-hull ship for example. Perhaps more important in practice is the second-order slowly-varying
in time vertical force on small-waterplane-area floating bodies. Its modulus may be smaller than
the mean vertical force, but is likely to cause large vertical excursions of the body if its frequency
coincides with the heave natural frequency. A first step towards the prediction of these second-
order wave effects is the evaluation of the mean vertical drift force. The present study analyses
this force by applying the momentum conservation principle. A computationally efficient interpre-
tation of existing results for submerged bodies is suggested, and new expressions are derived for
surface-piercing bodies that do not require the evaluation of the flow velocity on the body boundary.

An expression for the mean vertical heave force on a body undergoing a small-amplitude time-
harmonic oscillation under an otherwise calm free surface has been derived by Kochin (1940) [cf.
Wehausen and Laitone (1960), eq. 19.18] by applying the momentum conservation principle and
utilizing his “Kochin functions”. Lee and Newman (1971) extended Kochin’s results to include the
force component due to the interaction of the body- and incident-wave disturbances and derived
expressions for the mean drift roll and pitch moments. The analysis of Kochin and Lee and Newman
cannot be applied to surface-piercing bodies because the momentum-flux integration over the free
surface is “interrupted” by the body waterplane area. The prohibitive numerical effort required for
its numerical evaluation led to the derivation of drift force and moment expressions by Pinkster
and Oortmerssen (1977) based on the direct integration of the second-order hydrodynamic pressure
force over the body. They require the evaluation of the flow velocity on its wetted surface and a
careful interpretation of its position in order to include all second-order effects. A state-of-the-art
survey of second-order wave effects on floating bodies was recently conducted by Ogilvie (1983).

—_—

Submerged Bodies

Denote by o and ¢p the linearized complex incident and body velocity potentials, the latter
representing both the radiation and diffraction wave disturbances. The undisturbed free surface
coincides with the z = 0 plane, with the z—axis pointing upwards. The vertical drift force acting
_on a submerged stationary body, as derived by Lee and Newman (1971), is defined by

F=R(Wo + Ws), (1)

where

w0=_';'ipgAwHB(V:ﬂ:V)7r+ﬂ)i (2)
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where A is the incident-wave amplitude, and

HB (V,ﬂ,k, 19) - // {6993 (V,ﬂ’ f) “ﬁoB(U,ﬂ, E)___a___}ek;-ikécosq’-—ikn sin Ods. (4)
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The integration in (4) is carried out over the mean position of the body wetted surface with
the unit normal vector #i pointing out of the fluid domain, v = w? /9, B is the incident-wave
angle of propagation relative to the z—axis of a body-mounted frame, and k and ¥ are a dummy
wavenumber and polar angle respectively involved in the Fourier integration of expression (3). The
implicit dependence of the velocity potential ¢p on v and B requires the solution of the radiation
and diffraction boundary-value problems, but this numerical task needs to be carried out once in
conjunction with expression (3) where the indicated Fourier integration is carried out with respect
to k and 9 rather than v and 8. This property renders (3) quite useful for computation, and does
not seem to have been appreciated in the literature. An alternative form of (3), convenient to
use with panel codes, follows if the Fourier integration and body-surface integrals in the Kochin
function are interchanged, and the definition of the wave source potential G(x; ¢) at the field point
x due to a pulsating point source of strength —4x at £ is invoked to obtain

=P Opp _ . 9 _6_// dps B8\, .,
Ws = 1672 //s,dx(anz ®B an,) 32 s,df —6ne ¥B dne (G —1/r)dg, (5)

where r = |x — §|. The function G ~ 1/r is analytic in the entire fluid domain, thus over the
surface of any submerged body, and all integrals indicated in (5) can be carried out by quadrature.
Moreover, its values and derivatives can be evaluated concurrently with the kernels G and 8G/dn
in boundary-element integral equations and strored for subsequent use in (5).

Expression (3), on the other hand, is quite convenient to use for the derivation of the mean vertical
force on submerged elementary singularities often utilized to approximate the wave flow due to
deeply submerged bodies in long waves or due to slender bodies. Using (4) to evaluate the Kochin
function for a submerged pulsating unit source and vertical dipole, we obtain the vertical drift
forces

S I B YL NPy

Fy = = lo|*v o [2 + 2% Ei(2)|2=204; (6)
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where Ei(z) is the exponential integral. The vertical drift force on a horizontal dipale can be shown
to be half the force on the vertical dipole. The force on the source turns out to be suction-like for all
values of vd, where d is its submergence. For the dipoles the force becomes repulsive over a small
frequency range near the long wavelength limit. Similar results can be derived for higher-order
singularities as well as distributions of them.

Surface-Piercing Bodies

The application of the momentum conservation principle for the vertical drift force leads to infinite
integrals over the mean position of the free surface exterior to the body waterplane, involving
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quadratic products of the linearized velocity potentials and their derivatives. They can be reduced
to integrals over the mean position of the body wetted surface Sp, the waterline Cy and the mean
position of the free surface by an appropriate application of Green’s theorem. They take the form

F=RWw + Wo + Ws), (8)
where 5( |
p « .« 9po +e8) ;
Ww =7 » (¥5 +<PB)-——°5;-——J’, (9)
_ L. _P %¢5 . 8¢5
Wo = 5ipPgAw Hp(v,B,v,7 + f) 4](Cw ( 3n Po— s ) dl, (10)
__P 9vp _ 9¢s. .
Wp = 1 //;' (993, an on goB> ds. (11)

Expressions (8)-(11) do not include the quadratic correction to the hydrostatic force which can be
shown to be of cubic order for a wall-sided body. With the exception of (11), expressions (9) and
(10) involve as unknowns the values and normal derivatives of the velocity potential g on the
body boundary which can be determined very accurately by standard panel codes. For submerged
bodies, expression (9) vanishes and (10) reduces to (2). -

The integral in (11) extends over the entire free surface exterior to the body waterplane. Its
integrand is oscillatory, decays slowly at infinity and is inefficient to evaluate by quadrature. The
“conservation” form of (11) suggests that the integration over the free surface can be replaced by
an integration over the body boundary and over a control surface at infinity. The latter leads
to a purely imaginary contribution that does not contribute to the force, and the former requires
the evaluation of ¢5, and @g,, on the body boundary which may be inaccurate in conjuction
with panel methods. By virtue of Green’s identity and the form of (11), the integral over the body
surface can be displaced into the fluid a distance a few times larger than the typical panel dimension
to ensure the accurate evaluation of derivatives of 5.

For bodies with complicated geometries an alternative method for the evaluation of expression (11)
is more appropriate. The integrand of (11) would vanish if 8%¢pp /32% was equal to v3pp /dz on
z = 0. This equality does not hold for the total body-wave velocity potential ¢z, but does for
its oscillatory wavelike component. Represent pp on the free surface by a distribution of sources
of strength ¢(x) on the body boundary, and utilize the definition of the wave source potential [cf.
Wehausen and Laitone (1960), eq. (13.17”)]

1 1 4v [*®_ wvcosk(z+¢)— ksink(z+¢)
G(X;f)=;+;~7/‘o dk Y

- 2mive’ G+ [J (vR) - i, (vR)], (12)

Ko(kR)

where Ky(z), Jo(z) and Yp(z) are the Bessel functions of zero order. The last term in (12) is
the wavelike oscillatory component of the wave source potential which decays exponentially in the
z—direction. The corresponding wavelike component of o5 behaves similarly, and when substituted
in (12) does not contribute to the vertical force. Combining the identities,

1 + % = ;/ dk coskz cos k¢ Ko(kR), (13)
0

r
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where R? = (z - £)* + (y — n)? with the remaining terms in (12), (11) can be reduced to the form,

(14)

We = Wi + W3, (15)
W= [ da/ kdlc/ du =2 So (1, k, )3 (1, K, ), (16)
2
W2 = 4—2/ dﬂ/ K dk/ du—ts (v (SoH3 + SH3) + R(ScHE - SsX3)]. (17)
The “modified Kochin funcjions” $¢ s and }Ic,s are defined as follows
s (u k 19) __/ dx U(X) COSkZ e-iuzcost’—:‘uysinﬂ (18
st TS = Ss sin kz ‘ ’ )

a coskz , -
X ,k,ﬂ — H d ( n— ____) —iuz cos t’—tuysmo.
o (v ) Ss *\¥e ps on sin kz ¢ (19)

Expressions (16)-(17) involve the evaluation of infinite regular integrals with integrands that depend
on the values and normal derivatives of the velocity potential 5 on the body boundary, and can
be regarded as a generalization to expression (3) for a surface-piercing body. Computations are
presented of the vertical force on submerged and surface-piercing bodies based on expressions (1)- (5)
and (8)-(19) respectively, used in conjuction with the MIT radiation-diffraction code.
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