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1. Introduction

It is well known rhat in the linearized potential flow analysis of
a ship advancing at constant forvard speed in regular vaves a major dif-
ficulty is that the unsteady potrential contains the second order deriva-
tives of the steady potential due to forward speedz. Since the steady
potential itself, which is the solution of the Neumaun-Kelvin problem,
needs complex numerical modelling, high accuracy of its second order
derivatives is very difficult to obtain. However, it has been shown®
that thie difficulty can be easily avoided by the use of the localized
finite element: method in the near field combined with a boundary
integral equation in the far fieldl, instead of the more common source
distribution method. The results given here suggest that only the first
order derivatives ave then needed. To demonstrate the principle, we pro-
vide tvo examples without free surface effects.

2. Governing eguation
Besides satistying the Laplace equation, the steady potential $ and
the six components 4. of the unsteady potential satisfy the following
conditions on the hodf surface 302
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where w is the hody oscillation frequency and U is forvard speed; n is
the normal of the body surface with the components

n = (n1’"2'”3) H Axn = (nA’nS’"6) (2a)
An. MW = U(m],mz,m3) 3 An. M (XxH) = U(ma,ms,m6) (2b)
Vo U(-x%) (2c)

For the body in an unbounded fluid domain, the potential also satisfies
the radiation condition which requires that the potential tends to zero
at infinity.

3. Coupled finite element method

Instead of satisfying the Laplace equation in the whole fluid
domain, the finite element method imposes the Laplace equation in a uni-
form sense. We have®

j”v?'wdo -0 (3)
R
vhetve R; is a fluid domain surrounding the body surface, and ¢ is an
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appropriately chosen veight function. From Green’s identity, (3) becomes

[11v6%do - Ha"’wdq - 152uds (4)
R S
where 91 is the ourét bounda19 of R Tn (3& 2¢ on the rlght hand side
is knowﬁ from the body surface condltxon, n on "the left is to be deter-
mined by an integral equation in the outer aomaln R2 Ve obtainl,
3G
$ = —ffl an - ——Glds ' (3)

where o is Qhe subtended angle and the Green fuggtion is the Rankine
source. Combining (4) and (5), we can eliminate n from (4) and obtain
an equation for ¢.

As discussed in the introduction, one of the main difficulties is
the second order derivatives on the right hand side of (4). But since in
the present method they appear in an integral form, it is possible to
reduce the order of these derivatives. Taking ¢1 in two dimension as an
example, we have
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vhere we have taken ¢ as the finite elvyent shape function MN,, since its
choice is quite arbitrary. Using W.n=0 on S, %) n3dS and

dz=-n,dS, and noticing that the second 1nt9gration is zero, we obtain
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One can thus prove for both the two and three dimensional cases3
qu mideS = - IWVNjnidS - (7)
So SO

4. Numerical examples

Ve give examples of a circular cylinder and a sphere, to demon-
strate how equation (7) works for the two and three dimensional prob-
lems. We define w. as the solution of the unsteady potential without
forvard speed and shtisfying the body surface condition

V.
=) = n, (8)
an
From (1), we immediately have for j=1,2,3
oy e 9)
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where (%,,%,,%,)=(%,¥,2). From the solution for ¢. in the polar coordi-
%pmz :

nate sys (x3y)=(rcos®,rsin®), we have for a cirdular cylinder
a2 U32 i a2 U 2
?1 = _iwircose - —ZTCOSZG; ¢3 = —iw?—sine - :%rsinze (10)
From the potentials we obtain the added masses uij asé
2
22U
SPIRLE I DA S E R T (11)

Table 1 compares the analytic solution and the numerical results from 12
elements using 8 point quadratic shape function. It can be seen that
they are in very good agreement.

Similarly, we obtain the solution for the sphere

iw a3 U a 2

5 5 cosO - 5 3 (3cos™6-1) (12)
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in spherical coordinate system (x,y,2)=(rcos8,rsinbcose,rsinbsina) with
corresponding results for ¢? and ¢34; and the added masses are

23 12 U2 23 9y’

ull = pn-("ja + "5—' ;’z’a); UZ2 = l—l33 = pu(ga + 5 'w—za) (13)
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with the cross terms being zero. Table 2 compares the comparison of the
analytic solution and the numerical results for the sphere based on 54
elements and 20 point quadratic shape functions. It can be seen that
they are in fairly good agreement. It is believed that the accuracy of
the numerical results can be further improved by using a finer mesh of
more elements.

5. Concluding remarks

Equation (7) was originally obtained by Ogilvie and Tuck. This
result was thought to be useful to avoid the computation of the deriva-
tives of the unsteady potential in the calculation of the hydrodynamic
coefficients. We have noticed however that the reversed application of
this equation is particularly useful in the solution of the potential
unsing the coupled finite element méthod. We have found that for an
oscillating body at forward speed below a free surface this approach is
also very successful4. For a surface ship, equation (7) will contain a
term including a line integral of the shape function. This will not
offer numerical difficulty, since the calculation of the mean drift
force has a similar line integral, and results using the shape function
have been found quite satisfactory. Finally, it is interesting to point
out that the influence of & on 'd, can not be neglected in general, as ve
can see from equations (10) to (13).
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Table 1 Added mass of a circular cylinder for U=0.4\|ga
numerical

oa | |
— 3 H,.

g | ~~l% -Ji% | analytic

{ pna pna }

0. T 4.1964 |‘“““Z.1175 | §.2000
0.2 | 2.5969 | 2.5575 | ) 2.6000
0.3 | 2.00638 | 2.0375 | 2.0067
0.4 | 1.7972 | 1.7775 | 1.8000
0.5 | 1.6373 ; 1.6215 | 1.6400
0.6 | 1.5306 | 1.5175 | 1.5333
0.7 | 1.4545 | 1.4432 | 1.4571
0.8 | 1.3973 | 1.3875 | 1.4000
0.9 | 1.3529 1.3442 | 1.3555
1.0 | 1.3174 l 1.3095 | 1.3200

Table 2 Added masses of a sphere for“U=0.4\|§E
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J nmerical | analytic | numerical | analyric
I T R e T30 S B T T\ N A e /< - B M B4 TV
0.2 1 1.8978 | 1.9400 | 1.4357 | 1.5800
0.3 1.4300 | 1.4600 | 1.1220 | 1.2200
0.al 1.1962 | 1.2200 1 0.9652 | 1.0400
0.5 1 1.0559 | 1.0760 | 0.8711 | 0.9320
0.6 | 0.9623 | o0.9800 | 0.8083 | 0.8600
0.7 0.8955 | 0.9114 | 0.7635 | 0.8086
0.8 08454 | o.8000 | 0.7200 | 0.7700
0.0l 0.8064 | o0.8200 ! 0.7038 | 0.7400
1.0 o0.7752 | o.7880 | 0.6828 | 0.7160




Palm:

Discussion

You point out in your lecture that a major difficulty in
your problem is that the unsteady potential contains the
second order derivatives of the steady potential due to
forward speed. I would like to point out that in two-
dimensional problems these second-order derivatives may
be expressed by first order derivatives along the body
surface. This is applied for a submerged circular
cylinder in Grue and Palm (J.Fluid Mech. (1985),151,
257-278) . _“
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