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ABSTRACT. Previous expansions of the perturbation solution to the weakly nonlinear
boundary value problem for a hinged wavemaker of variable-draft have not included
the time-independent contributions in a completely rigorous manner. Time-indepen-
dent forcing data appear in the Neumann boundary conditions at second-order on both
the wavemaker and free surface boundaries. Orthonormal eigenseries may be used to
satisfy these time-independent boundary conditions. The horizontal derivative of
the leading order term in this eigenseries is shown to be exactly equal in mag-
nitude, but opposite in direction, to the Eulerian Stokes drift. Previous estimates
of this mean, uniform over depth, return current have been computed from a conserva-
tion of mass flux principle. Profiles of the Lagrangian-induced streaming currents
computed from the second-order time-independent eigenseries illustrate the effects
of the irregular points on the accuracy of the second-order solution.

NONLIN WAV R_THEORY

All physical variables (denoted by superscript asterisks, *) will be made
dimensionless by the following: (x,z,h,d,b,A,L) = k¥(x*,z% h*, d* b* A% L*); (t,T) =
JEFRE (t%,TH); (H,n,8,€,x) = (HE,n%, 5% €%, x%)/a%; (u,w) = (uk,w¥)/(ax/gFc*); & =
o*/(a* [g*/k¥); B = Bx/(a*g*);, and p = p*/(p*a*g*) where a* = amplitude of the first-
harmonic wave component; k*(= 2x/L*) = the wave number; L* = wave length; g* =
gravitational constant; p* = fluid mass density; and T* = wave period = the period
of the wavemaker oscillation.
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Fig. 1. Definition sketch for generic wavemaker.

A generic wavemaker is shown in Fig. 1 which generates two-dimensional, irrota-
tional motion of an inviscid, incompressible fluid in a semi-infinite channel of
constant, still water depth, h.
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The solution to the second-order problem may be expressed as the linear sum of
four scalar velocity potentials given by 2% = 2¢S+2¢e+2¢f+w in which 985 is a
second-order Stokes wave potential; 9%® is a near-field evanescent interaction
potential; 2¢f is a wavemaker-forced potential; and ¥ is a time-independent poten-
tial needed to satisfy exactly the following two boundary conditions:

£{2¢S+2¢e+2¢f+W} - aif1(¢1)sin2(x-r)-alsin(x-Zr)m§2 apexp(-apx)£2 (41, ém)
+a1cos(x-2r)m§2amexp(-amx)f3(¢1,¢m)-sin27m§2 n§2amanexp[-(am+an)x]f4(¢m,¢n)
-alcosxmgzamekp(-amx)f5(¢1,¢m) ; x20, z=0

a s e f ! sin2r
= {ZQ +2Q +2¢ +¥) = 5 W1(¢1,£,z)[1-cos2r]+ —— m22 2% 2(¢ »€,2); x=0, -h=<z<0

in which the nonlinear, free surface interaction terms f;, f5, f3, f4, and fg5, and

the nonlinear wavemaker interaction terms Wi and W2 represent nonlinear interactions
involving first-order quantities; and £(s+) = (w23 /612+ 8/8z) ().

The second-order, near-field evanescent potential, 2%€, is given by
29%(x,2z,7) = ajcos(x-2r) Z,apexp(-agx) [Ané1(2)¢n(2)+Byé](2)4 (2)]
-a1sin(x,2r) %, apexp(-anx) [And] (2)$n(2) -Bpb1 (2)¢n(2) ]

-sin27m§2 n§2amanexp[-(am+an)x]Cmn[¢m(z)¢n(z)-¢,§,(z)¢{1(z)]

ol [3(4u tal-1)+2u’] - [(burral-1) %4202 (4u+al-1) -8a2 )
A =2 ; B =
m w 2, " "m 2w 2
o [(4w +a -1) +4am] (4] [(4wo+am-l) +4am]
2 4
) aa [(am+an) + 2aman+ 6w°]
mn 4w 2 4
o [(am-an) + 4w°]

The second-order, wavemaker-forced potential, zéf, is given by

2¢f(x,2,r) - {Elcos(ﬂlx-2r)+Flsin(B1x-27}Ql(z)-jgzexp(-ﬂjx){Ejsin27+F'cosZr}Qj(z)
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The second-order, time-independent, free surface potential, Wfs, is given by

f
“(x,2) = ajcosx B2 exp(-a,x) [b 4, (24, (2)+e g1 (2)! ()]

- alsinx m§2amexp(-amx)[bm¢i(z)¢é(z) - Cm¢1(z)¢m(z)]
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The second-order, time-independent, wavemaker potential, ¥¥I! {g given by

VTx,2) = Z0d 00 (2) [exp(pyx) + 6y (k1))

¥;(2) = cosu, (z+h)/[h/(2-5, )1/ By =dn/h ;3= 0

jo
dy = (2, (0)/w )6, w1 (1601wl s a g (0)[(L4ud-a 2y 2aal) 1y g
3 3(02/05) 18547k 31 YoMy o2t % ;
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M ORIZON MOMENTUM

The time- and depth-averaged horizontal momentum per unit area is

n
Mg Ly = <S5 Ug (192>

where <e>9, = (21r)‘1 fi“(-)dr and UE(L) is an Eulerian (Lagrangian) velocity.
Eulerian. The Eulerian velocity is given by Mg = Uy + Ug where

= o J¥
Uy = -e [} 35 dz - Uy o(dy) + Uy (o h,x)

U<I> - jewo<(61Q/8x)(alQ/61)>2" - UQ’m(wo) + U@,e(amh’x) ; 2=0

The dimensionless far-field component, Uw;w(do), is given by
Uy, w(do) = -€do/R = -€(2up) "1
which is exactly equal to the mean return current in a closed wave flume! This

quantity is usually estimated from a conservation of mass flux principle. The
dimensionless evanescent component, Uw’e(amh,x), is given by

2
Uw,e(amh,x) - e(2wo) cosx 22 m¢ (o)[a -tanx)exp- a X
The dimensionless far-field component, UQ’w(wo), is given by
Up, (o) = €(2w5) "1

which is the Eulerian Stokes drift that is exactly canceled by Ug, o(dg)! The
dimensionless evanescent component, Up e(aph,x), is given by

e(amh,x) = (€/2) cosx m§2 am¢m(o)[am-tanx]exp-amx
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Lagrangian. The Lagrangian velocity may be estimated from the Eulerian velocity
by, approximately

- - -+ r = , '-o - 2

0 V¥ + (e/w )<(J" V,&dr’) V(v 8)>, + 0(e")

where the Lagrangian velocity ﬁL = [uy,vy]). The horizontal component up(x,z), is
approximately

.. 0% e  cosh 2(h+z)
w2 = e gt Setmoon ¢ (/D) cosx

m§2 amamexp-amx[¢i(z)¢é(z)(am-tanx) - ¢1(z)¢m(z)(amtanx‘+ )

and the vertical component, vi(x,z), is, approximately

. v -1 ,
vL(x,z) - - 3z e(2wo) a,cosx m§2 amamexp-amx[¢1(z)¢m(z)(amtanx-l)

+ ¢$1(2) ¢ (2)(tanx + @ )]

The magnitude of the time independent velocity |GL| is illustrated below.

h/L, = 0.2 h/Lo = 0.5
T 2/n
' ' do<lh‘
N t
B\ S e e — - - - g t z/h
NKRIZ=ZDZ -~ - - -
'\k:‘-—- -— -~ -— — 1 do/m
:ht\~-—._o— -~ — -— ! f - -\.g
NN h NN == == -~ = - - T
:\'\-.-s_._ - — — -— ' \\____._ P - - -—
N N e G e e e -— -— -~ ' \\._._.——— — -— —
be = = = — = = -— - R s\.\::::.—_ _ _ -
o | 2 3 x/h .: .: - e = e — - - _
' f} -~ S e - -— -—
l.l ------ p— — -—‘
' i 4 ¥ >
) 1 2 3 x/h
t * 2/h
. d°<~/ﬁ do /A
f ! i N
S - IZ oo \§S§::: —— - - == _ g
}7—-—.——— - e - -— -'\\\::: - - - -
T e e e = e -— o -— ' :\\.~__._ -— -— -—
\'\t\s._..._ -— -— -— = h ‘\:\\~ -— -— -— -— —
NN - - D= = -— -— et NN 22T Z -— — - h
v~ 222 — -— - — NS T = - _ - - -
UL I T D - - - - e o T oo - - -
0 { 2 3 x/h 0 t 2 3 x/h

- 74 -




Ursell: The terms in your potential ;®° should be harmonic functions but it is not obvious that
they are. A detailed explanation would be appreciated.

Hudspeth: The ,®° potential is required to satisfy the inhomogeneous free-surface forcing which
is composed of products of elementary transcendental functions from the first-order solution. Al-
though it is not obvious that a careful combination of these products of elementary transcendental

functions will be a harmonic function, a typical term in the double summation series can be seen
to be given by

Pmn = Crmnezp|—(0m + )] [0 (2)0n (2) = @, (2)0 (2)]

= n mr: ezp[-(am + an)x]cos(am + a")(z + h)
_ Cmn exp|— Ky 2|cos Ky (2 + h)
Pmn = Nim My P mn mn

which is a harmonic function. A typical term in each of the two single summation series may
then be obtained from a typical ¢,,, term, by letting the separation constant be complex-valued
(ap = +4, say) and C,,, = A,, — 1B,. Each term in the single summation series becomes a
product of elementary transcendental functions which is a harmonic function having a complex-
valued separation constant.
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