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In recent papers Doctors and Beck have discussed the limiting behavior
of the Neumann-Kelvin problem for increasing numbers of panels and
integration steps. The results of their calculations. presented in [1]
demonstrate that their Neumann-Kelvin solutions converge smoothly,
although slowly, for the case of a submerged body even when remarkably few
integration steps were used. Their results for a surface ship (the Wigley
hull) given in [2] are somewhat less encouraging, exhibiting some surprising
oscillations in the convergence as the number of panels was increased, but
still limiting to a reasonable value.

In a similar study, we have examined the results obtained with our own
Neumann-Kelvin solver as the number of panels was systematically
increased. We found that the Neumann-Kelvin solution was quite well

behaved for the Wigley hull, with the wave resistance coefficient converging

smoothly to a finite value which is in good agreement with experimental

data. However, for two hull forms which are not wall-sided, the limiting

behavior was found to be quite different, with calculated wave resistance
coefficients apparently increasing without bound as the panel density was
increased.

Our formulation of the problem is quite similar to that given by Doctors
and Beck, but our numerical approach differs, primarily in the method of
evaluating the Havelock source. The velocity potential is given by:
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The potential 6; due to a unit source strength distributed uniformly over the
ith panel is given by:
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The first term on the right hand side is to be integrated over the panel
surface, and the second term is integrated along the waterline if the panel
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intersects the free surface. The zero normal velocity boundary condition is
imposed at the centroid of each panel in order to set up a system of
equations which can be solved for the unknown source strengths o, :
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We use a form of the Green function given by Wehausen [3], but the variables
of integration have been transformed from (k,8) into the rectangular wave
number coordinates (kx,ky):
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We have found that numerical integration of the Green function over (k,0)
requires extremely small integration step sizes to accurately evaluate the
energy contained in the higher wave numbers which are important near the
free surface. This difficulty may explain why Doctors and Beck found that
their results converged more smoothly for the submerged body than for the
surface ship. The use of (kx,ky) as the variables of integration has the

distinct advantage that the integration step size is dependent only upon the
length of the ship and its forward speed. Since the energy at high wave
numbers will depend exponentially upon the depth of the source point and the
field point, we can easily adjust the domain of integration for each source
panel on the hull to obtain a specified level of accuracy.

Our approach to examining the convergence of the Neumann-Kelvin
problem for the Wigley hull was very similar to that used by Doctors and
Beck. The panel aspect ratio (panel length divided by panel height) was held
at a value of 2.0 for consistency. As we plotted the singularity distribution
calculated for each successively finer panelization of the hull, we noted that
the most significant differences occured on the panels nearest the free
surface. This is due to the fact that our Neumann-Kelvin solution satisfies
the hull boundary condition at the centroid of each panel, and for
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successively smaller panels we are imposing a zero normal flow condition at
points nearer the hull/free-surface intersection where higher wave numbers
become more important. Therefore, we concluded that the dominant
parameter in the convergence study was the panel height. Plotting the wave
resistance coefficient versus the panel height (equivalent to plotting versus
the inverse square root of the total number of panels), we found that the
results converged smoothly and rapidly to a limiting value which agrees well
with experimental data [4]. We concluded that the Neumann-Kelvin problem
is quite well behaved for this simple wall-sided hull form, and the primary
difficulty in obtaining an accurate solution for large numbers of panels lies
in resolving the shorter wavelengths on the shallowest control points.

We have observed a very different behavior for some highly flared hull
shapes. We found that the calculated Cw changed quite radically when the
number of panels was increased and did not seem to limit smoothly to a
finite value. Concerned that the convergent behavior of the Neumann-Kelvin
problem might be limited to wall-sided hull forms, we repeated our
convergence study for a flared version of the Wigley hull. The results
showed a lack of convergence, with the wave resistance coefficient
increasing without bound as the panel density was increased.

In order to investigate the behavior further, we examined a simple
wedge-shaped bow section with 45 degree flared sides. We used two
different panelization schemes, each with a different panel aspect ratio. As
the number of panels was increased, the results obtained with the two
different aspect ratios came into agreement with each other, but they did not
seem to converge to a finite Cw. We observed that as the panels became
smaller, the singularity strengths on the row of panels nearest the waterline
seemed to grow without bound. We speculated that this result was
associated with the decreasing distance between the panel control point and
the edge of the negative image panel. We examined the velocity induced at
the contro!l point due to each term in the Green function as the size of the
panel was decreased. The positive Rankine term always produces a normal
velocity at the centroid of the panel equal to 2x, and for submerged panels
this term dominates all other terms. The normal velocities due to the wave
terms associated with both the surface singularities and the waterline
singularities are well behaved as the panel size is decreased. The negative
Rankine image is the only term which leads to a rapidly increasing normal
velocity as the control point approaches the waterline. For the particular
case being examined, with 45 degree flare, the panel and its image meet at
right angles and the normal velocity at the control point will become
dominated by the tangential velocity component on the image panel. Since
the tangential velocity will be proportional to the inverse square root of the
distance from the image panel, we anticipated that the singularity strength
would approach this inverse square root dependence upon the depth of the

- 155 -




panel. To demonstrate this, we examined the convergence of the infinite
Froude number solution for the same bow shape. The maximum calculated
source strength on the panels does appear to limit to an inverse square root
dependence upon panel size.

For the infinite Froude number case, the limiting behavior of the source
strength is not a significant problem since the source strength integrated
over the surface of the panel is still decreasing rapidly as the panel size is
decreased. However, in our formulation of the Neumann-Kelvin problem, we
assume that the source strength to be used in the waterline integral is equal
to the source strength on the adjacent panel. Therefore, in the limiting case,
we are distributing an infinite source strength right on the waterline,
resulting in infinite wave resistance. ~

Note that this problem is never encountered for wall-sided hull forms.
The image term's contribution to the normal velocity at the shallowest
control point is identically zero since the panel and its image lie in a
vertical plane. Accordingly, we examined the effect of rotating the top row
of panels on our flared bow shape into a vertical plane. We selected a
panelization in which the top row of panels were quite small, with panel
height equal to approximately one percent of the hull draft. The resulting
Neumann-Kelvin singularity distribution contained maximum source
strengths which are an order of magnitude smaller that those calculated for
the original flared panelization, indicating the sensitivity of the problem to
the geometry at the hull/free-surface intersection.

We have demonstrated the limiting behavior of the Neumann-Kelvin
problem as it is usually formulated. The solutions are well behaved in the
limit of infinitesimal panel size only if the hull intersects the free surface
at right angles (i.e. wall-sided hull forms). For highly flared hull shapes the
calculated source strengths near the waterline are proportional to the
inverse square root of the panel depth, and consequently the calculated wave
resistance coefficients do not limit to finite values as the panel sizes are
decreased to zero.
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