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This work is part of a research programme on waves which encounter
coastal structures. Here we consider unsteady waves in two-dimensional,
irrotational, inviscid flows. We have used the boundary integral method
developed by Dold and Peregrine (1986), which we have modified to tackle wave
propagation over irregular beds. At the last Workshop we reported computations
of the interaction between solitary waves and semi-circular submerged obstacles
(Cooker and Peregrine [1988]), as shown in Figure 1. Here we report some
experimental results which bear out our earlier numerical work.

We used the wave tank at Santander University in Spain, which is 70m
long and 2m wide. It is equipped with a piston-type wave maker suitable for
generating solitary waves of height up to about 0.51h, where h the depth, varied
from 25.5 to 34.0cm. The depth was varied in order to change the relative size
of the cylinder from 0.6h to 0.8h. Wave gauges were placed in the vicinity of
the obstacle and the surface elevation was recorded as a function of time. 4
video record was also made.

Amongst other features the computer predictions show that waves of
height between 0.3 and 0.6 (on a depth of unity), when passing over obstacles of
radius between 0.7 and 0.9, the tail of the transmitted waves steepen and often
break backwards onto the cylinder.

Figure 2 shows a comparison between computations and experimental
measurements made by gauges near the backward breaker. (Figure 3 shows the gauge
positions and computed profiles.) The agreement is good, and this is true of the
other predicted phenomena. For instance the numerical results show that solitary
waves decrease in amplitude as they approach the obstacle, and at the same time,
a new crest grows on the other side of the obstacle. This new crest becomes the
transmitted wave. The video clearly shows this crest exchange.
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In those cases where the transmitted wave breaks forward, experiments
and computations agree as to the time and position of breaking. It is worth
noting that in all cases where the solitary waves break they do so beyond the
obstacle.

The video recorded the wave behaviour close to the breakwater and has
allowed us to look at the surface motion beyond the time at which our
computations stop (It is not possible at present to compute beyond the initial
wave overturning.) Figure 4 is a sequence of tracings from the TV screen which
shows the surface steepening of a backward breaker. The incident wave crest
moves from right to left. The backward breaker is seen to move from left to
right, against the left side of the obstacle. As it moves the wave partly
breaks, and continues back across the cylinder. This is peculiar, because
clearly reflection has occurred in the uniform region behind the obstacle.

In the limited range of wave heights and obstacle radii of the
experiments our computations give encouraging agreement. Although our
computations give a complete description of the hydrodynamics there is much left
to explain:

(i) Why is there a second crest when the wave is near the cylinder 7

(ii) Why do all breaking waves break beyond the cylinder 7

(iii) Why is it that in the uniform region beyond the cylinder, there
are waves of reflection 7

The incident wave induces an unsteady current over the obstacle. We
solve the problem of a steady current U, passing over the same obstacle, where
U, is chosen so that a flux passes over the obstacle similar to that induced by
the wave. Different disturbances develop downstream which are like those
observed for the solitary waves. For example, the steady flow can induce a
depression over the obstacle of comparable size to the dip between the two
crests, seen during crest-exchange. The flow can also induce a backward breaking
wave, similar to that caused by the solitary wave.
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Figures 2 and 3
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Figure 4. Video tracings of surface profiles. The frame numbers are shown.
Wave height a = 0.51, cylinder radius R = 0.7.
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Figure 2: Computations: ——. Exp. Measurements: Symbols
0.2 match those over gauge positions in Fig. 3. a =0.52, R =0.7.
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DISCUSSION

Vinje: Do you think that the backward breaking effect in this case
can have anything to do with a bore-like behaviour? You used the
complex velocity in your solution of the Laplace's equation. How do
you step your solution forward in time then?

Cooker et al.: Our computations show that backward breaking does
not occur in a supercritical flow. If we know initially ¢ on the
free surface, then the integral quation gives us the derivative of
¢ normal to the surface ¢, -The tangential derivative can be found

directly: call it ¢,. Bernoulli's eq.: D¢/Dt = 1/n (¢ 2+ 0,2) +gy
gives D@/Dt. We can repeat the integral equation procedure for o,
and so find DZ<¢/Dt?, likewise the 6., problem gives D3¢/Dt3.

From these DR¢/DRtZ(¢) terms we have a Taylor series for ¢ in

time-likewise the free surface position is updated from U, DU/Dt

etc. and we use the kinematic F.S. condition for fluid point R
DR/Dt = U.

Dias: 1) How do you perform the marching in time (in the physical
plane or in the transformed plane?)

2) In your last example, you said Ug= 0.15. Does it actually mean

that the Froude number is 0.15?
3) Are you familiar with the work by Vanden-Broeck on steady
solutions of ?

Cooker et al.: 1) Time-marching is only done in the physical plane.
2) Depth and gravity are scaled to 1, so Ue is numerically the

Froude no. of the flow at infinity.

3) I am unaware of Vanden-Broeck's work on the steady free-surface
flow problem over a semi-circular obstacle. However, we are
interested here in subcritical flows where Fr=0(0.1). [M. Cooker].

Greenhow: Is it possible that the discrepancy in measured and
calculated free surface elevations is due to vortex shedding by the
hump? Some flow visualizations would be nice!! [P.S. Are you sure
the breaking wave is not some sort of hydraulic jump?]

Cooker et al.: I agree that flow separation from the surface of the
cylinder may have occured. With hindsight we should have used a dye
tracer. However, our video pictures do not show bubbles or cavita-
tion at the cylinder surface. This of course does not say separa-
tion never occurred. The Froude number of the flow during backward
breaking is not super critical, in the computations.
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Moose (the huge): 1) Have you examined waves, incident on your
semi-circle which are different from solitary waves?

2) In the 3D problem would you expect to find yourself wearing
white shoes and white cricket trousers?

Cooker et al.: 1) Yes, I've looked at a group of sinusoidal waves,
amplitude-modulated by exp(-x?). The results are rather different
with breaking occurring at the cylinder, in the shoaling part of

the flow domain. The behaviour is very different from the solitary
waves, and closer to intuition.
2) Yes!
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