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The complexity of the second-order problem compared with the linear one resides in the infinte
extent of the non-homogeneity of the free-surface condition. The prediction for the solution of
the second-order problem (second-order velocity potential) or second-order forces exerted on a
body requires an integration which involves the nonhomogeneous free-surface forcing term over the
entire free-surface extrior to the body waterplane. A few effective algorithms for this integration
are reported. But those methods not only require the discretization of the free-surface with panels
but also may have difficulties as the water depth increases.

An alternative approach which does not involve the integral over the free-surface is proposed by
Sclavounos(1988) for the infinite water depth problem. The non-homogeneity of the free-surface
condition is extended throughout the entire free-surface by decomposing the second-order potential
appropriately. Specifically the second-order potential is decomposed into two parts, the one is
named the particular solution{wp) which is subject to the non-homogeneous free-surface condition
throughout the entire free-surface, and the other is named the homogeneous solution(pg ) which
satisfies the homogeneous free-surface condition on the free-surface exterior to the body and an
appropriate body boundary condition which insures that ¢p + @ satisfies the homogeneous body
boundary condition. This decomposition facilitates the analytic integration over the free-surface
and produces an explicit expression for ¢p. The complete second-order potential is obtained by
adding the second-order incident wave potential and second-order radiation potential to op + @y .
However we will restrict our discussion only on the latter component.

The present study derives new expressions for the second-order forces in the form of integrals
involving “modified Kochin functions”. By examining these modified Kochin functions, it is shown
that both submerged and surface piercing bodies share the same expression for the second-order
forces despite the singular behaviour of second-order potential at the body waterline.

SECOND-ORDER POTENTIAL

For simplicity, we consider only two elementary components of the particular solution(“second-order
Green functions” ). Each Green function satisfies following nonhomogeneous free-surface conditions,
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where D is the solution of the diffraction problem defined as the interaction of the incident wave
¢ with the linear wave source potential of strength o3, and R7 is the solution of the radiation
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problem defined as the interaction of the two linear wave source potentials of the strenths o, and
02. The superscript + represents the sum frequency problem.

These diffraction and radiation Green functions accept the solutions
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where
w; : frequency of linear wave source potential

o; . strength of linear wave source potential
Z : location of field point

&; : location of linear wave source potential

A, B, 6; : amplitude, heading angle, and phase of incident wave
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The contributions from the poles in equations (3) and (4) are accounted for by introducing complex
wave numbers defined by
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where 6§ and € are small positive parameters.

The other elementary components of the particular solution have similar expressions. The total

particular solution can be obtaind by the integration of the sum of elementary solutions over the
body surface.

The particular solution of the diffraction problem is
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and that of the radiation problem is
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It should be noticed that the velocity potential pp is harmonic in the entire fluid domain including

the domain interior to the body boundary, but is singular near the intersection of the body with
the free-surface.

SECOND-ORDER FORCES AND MOMENTS

The second-order forces (moments are understood hereafter) on the body are obtained by the inte-
gration of second-order hydrodynamic pressure force over the mean position of the body boundary
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where 7 = (n1,n2,n3), (n4, ns,n6) = (z,y,2) X i and p is the fluid density. ¢z is a linear velocity
potential subject to
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An alternative form of the exciting-force expression can be obtained by the introduction of an
auxilliary linear velocity potential ¥; subject to the homogeneous free-surface condition (8) and
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Applying Green’s identity between ¢z and 4; and making use of the boundary condition (9), the
alternative force expression takes form
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For submerged bodies we can express X; as the integration of product of Kochin functions using the
definitions (3) and (4) of the second-order Green functions. The forces for the diffraction problem
is
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and the forces for the radiation problem is
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is the “classical Kochin function” and
S;(l,a) = //; a,-(f-)e"*“‘ cos a+iin sin a (15)

is named the “source Kochin function”. In equations (12)-(15), / and /, haves the same definitions
as in the equations (3)-(4), and a and «a; are defined by
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The source Kochin function S;(/, &) can be replaced by the Kochin function H;(l,«) for submerged
bodies by utilizing the jump condition on the boundary of distribution of sources. Expressions (12)
and (13), after replacing S; with H;, are convenient to use for the derivation of explicit form of the
second-order forces on deeply submerged elemetary singularities as well as distributions of them.

For surface piercing bodies, the singular behaviour of the second-order Green function near the
intersection prevents the direct interchange between body integration and Fourier integration as
is the case for the submerged bodies. To overcome this difficulty, for wall sided bodies, we divide
the body integration into two parts by introducing an arbitrarily small quarter circle of radius §
excluding the waterline intersection. Denoting the circular strip by W¢ and the rest of the body
surface by S{, the second-order forces can be written by
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The first integral of equation (16) can be expressed by equations (12) or (13) after interchanging
the integrations. The limiting value of this integral can be shown to be finite by examining the
behaviour of the Kochin functions for large values k and k;. The Kochin functions H; and S; for
the half infinite vertical circular cylinder decay like O(k+) and O(k?), respectively. The rates of
decay of the Kochin functions are such that the expressions (12) and (13) are finite. This behaviour
of Kochin functions holds for other body geometries for the large values of the wave numbers. The
second integral vanishes according to the analysis given by Sclavounos(1988). Therefore, equations
(12) and (13) express the forces on the floating bodies as well as submerged bodies.
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DISCUSSION

Yue: In the more traditional way of treating the second-order
diffraction/radiation problem (e.g. Kim & Yue, 1989, JFM vol.
2000), the requisite free-surface integral can likewise be reduced
to a form involving generalized Kochin functions. This, incidently,
results in a substantial savings in computational effort if the
second-order potential itself is being solved for. Would you please
comment on the (possible) relationships and perhaps contrast the

key differences between that type of formulation and your present
work?

Lee: The "source Kochin function” in the present work and the "gen-
eralized Kochin function”" in Kim & Yue (1989) both arise due to the
expression of the 1lst order potential and its derivatives on the
free surface in terms of a distribution of linear wave sources on
the body surface. The appearence of Kochin functions in both formu-
lations is also the consequence of the separation of the source
point on the body and the field point on the free surface. This
separation implies that the integration with respect to the field
points can be simplified. A well known example is the mean hori-
zontal drift force expression using the momentum conservation
principle.

The key difference between the two approaches is that the
present work is based on the analytic integration of the forcing
term throughout entire free surface while in Kim & Yue separation
of two variables is exploited only at far field where local wave
effect is small. As a consequence the "source Kochin function"
involves both propagating and local waves and the "generalized
Kochin function”" involves only propagating wave. In this regard,
it may be more appropriate to put "generalized" in front of the
former.
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