VECTORIZED COMPUTATION OF THE TIME-DOMAIN GREEN FUNCTION

by
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In the time-domain solution of the three-dimensional unsteady ship motions problem, the
computation of the free surface term of the Green function accounts for the largest portion of the CPU
time. In order to proceed with realistic computations, fast techniques for evaluating the Green function
are needed since the body-nonlinear problem requires computation of the Green function over the past
history of the motion at each time step. An increase of speed.of about ten times over previously available
techniques for calculating these terms has been achieved through the use of vectorized interpolation and
asymptotic routines on the CRAY X-MP/48. The new Green function techniques are being applied to
determine the hydrodynamic forces on a body of arbitrary geometry undergoing large-amplitude motions
in the presence of a free surface.

In the present work, the body boundary condition is being applied on the exact time-dependent
three-dimensional body surface and the free surface is linearized. This method corresponds to the classic
Neumann-Kelvin approximation for steady flow, and success has been achieved in solving the unsteady
linearized radiation and diffraction problems using the mean body position (c.f., King, Beck, and
Magee, 1988, Magee and Beck, 1988a, and Korsmeyer, 1989). Other researchers are also working on
body-nonlinear computations. Ferrant (1989) has solved for the radiation forces and wave enegy
dissipation due to translational motion of axisymmetric submerged bodies in both the time and frequency
domains using the body-nonlinear formulation. Work on this problem is also proceeding outside
academic circles.

The problem is formulated as follows. The fluid domain is bounded by the free surface, S, the
body surface, Sp, and a surface at infinity, See. An inertial coordinate system is chosen with the z-axis
upwards and the origin fixed at the calm water surface. Ideal irrotational flow is assumed so that the
velocity potential satisfies Laplace's equation

V2¢=0 (1)
On the plane z = 0 a linearized free surface boundary condition is applied such that:
[(3/@t)2 +gd/dz] $ =0  on z=0 )

The body boundary condition is the no penetration condition applied on the exact moving body
surface, Sp, (t). Thus,

op/on = (U+w xr)en on Sp () 3)
where,

U = the vector of the body translational velocity
= the body rotation vector
= the unit normal to the body surface out of the fluid
The condition at infinity is that
Vo -0 as r— oo 4)
and an initial value problem is posed such that

o, 00/0t — 0 as t— —oo (5)
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The appropriate time-domain Green function is given by

GP,QtT) = (I/r - NS(t-1) + Ht-1)G P, Q1,7 (6)
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where,
P=(x,y,2)

Q=@¢E,n,0
A=kr

H=—z+0)/r
B=(g/t)(t-1)

r=[&-92+F-m2+@+)2]12

~__ The parameter | relates the vertical to horizontal distance between source and field points, and B is
time like and relates to the phase of the generated waves. The function is oscillatory for large P and is
sharply peaked (though not singular) for i near 0.
An integral equation is developed by applying Green's theorem to the fluid domain and integrating
with respect to time. The final form is found to be

o @) + 127 (&(Q) don(l/r = 1/r)dS =~ 127 [ (1/r - 1/1") 3/onQ ¢ (Q.1) dS
Sh(t) Sh(t)

t ~ ~
~12n | é (?(?,1:) 3/nQ G(P.Q.L1) ~ GP.Q.t,7) 3/dnQ ¢ (Q,1)) dS dt ®)

The dynamic pressure is found from Bernoulli's equation, and the hydrodynamic forces determined
by integrating the pressure over the body.

Because of the history dependence in the time domain, over 90 percent of CPU time in the
calculation is spent evaluating the free surface term of the Green function (7). A very fast method for
computing this function is needed for body-nonlinear calculations to be practical. Interpolation seemed a
logical alternative to the semi-analytical methods which have previously been applied. However, the
simple bilinear interpolation described by Ferrant (1988), while very fast, requires an enormous amount of
data for sufficient accuracy. On the CRAY virtual memory is not available, and the cost of reading this
data from disk is prohibitive. To reduce the size of the data file, bicubic interpolation is being employed.

Given the restrictions imposed by limited core memory, it was also necessary to compute G in two
parts. A simple analytical approximation is made, and this is subtracted off to obtain a smoother function
which can be more easily calculated by the interpolation scheme. Wehausen and Laitone (1960) have
shown that when both source and field points lie on the free surface (that is, for u=0), the Green function
reduces to the following form in terms of Bessel functions of the first kind:

A
G (0,8)=n B3/ (82) (J1/a (B2/8) * J-1/4 (B8 ) +J3/4 (B2/B ) * J.3/4 (B/8)) ®)
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The form of the asymptotic expansion (see King, 1987) suggests a dependence on exp(—B2+11/4) so that
the Green function can be calculated as pe P(=Posp/

A A
G (1B)= exp(-B2+wa) * G (0,8)+G;j (p.B) )

where G; (1,B ) is the part which must be interpolated over the grid, The two functions 8( H,B ) and
G; (u,B ) are shown in Figures 1 and 2 respectively. The function ¢ (0,8 ) is precomputed and stored
for one-dimensional interpolation. Decomposing the function into these two parts allows a much larger
grid spacing to be used than would have been possible without the separation. However, except for

H =0 (where Gj = 0), the analytic approximation is not perfect, and G; is still oscillatory. A nonuniform
grid spacing with a simple dependence on p and B was needed to further reduce the data requirements.
Thg ng;mniform cell boundaries are easily computed, thus avoiding the need to search through a table of
grid values.

The function G; was computed at 25 points per grid cell, and the 16 coefficients of the bicubic
representation were found for each cell. The system was overspecified to reduce spurious numerical
oscillations. The final data requirement is about 2 million words (1 word = 1-64 bit number), and hence
ihe program and data fit under the maximumn limit of 4MW on the CRAY. The coefficients are stored in
a file which is read in at the beginning of the time-domain computation.

The interpolation routines are fast and accurate. They run at about 85 million floating point
operations per second (MFLOPS). The X-MP has a maximum possible speed of 205 MFLOPS.
Approximately 5.0E-06 CPU seconds are required for one evaluation of the Green function and its
derivatives -- a factor of ten less than previously available methods (see Korsmeyer,1989), and sixteen
times less than those used by King. Ferrant gives CPU times only for his entire computation, which
include large amounts of unvectorized convolutions, since these were performed on a VAX 8700.
Overall, the CPU times for similar calculations are 40 to 60 times less on the CRAY, which seems
reasonable when one compares the speeds of the two machines.

The interpolated values using the two part Green function calculation scheme described above
agree with those of King's computations to within an absolute error of 1.0E-08 for the Green function
and 1.0E-06 for the derivatives. The accuracy of Ferrant's interpolation scheme was not given, except
that the final results showed no significant difference when compared to results obtained using analytic
methods for the Green function evaluation. Since only a limited number of Green functions can be
calculated in a given amount of CPU time, there is a tradeoff between the numerical error made in
calculating the Green function and the discretization error made in using a finite number of panels and a
given time step size. This tradeoff is presently under study.

For B > 10 the asymptotic expansion of the Green function (see King, 1987) was retained, and
the special expansion was used for | near 1.0, where the usual asymptotic expansion becomes singular.
This routine is now vectorized and requires only slightly more CPU time than the interpolation scheme.

The calculation of the infinite fluid terms is performed using the method of Hess and Smith
(1964). These routines have also been vectorized with a resulting speed up of eight times over the old
versions. For the submerged body, the (1 / r) term of the Green function need only be calculated once at
the beginning, but because the body position moves with respect to its image, the (1 /r") term must be
recomputed once at each time step. An LUD matrix solver is presently being used since this is the fastest
available at the San Diego Supercomputer Center. The convolutions are fully vectorized, and the
remainder of the calculations compute the geometry of the changing body position. The entire program
now runs at approximately 83MFLOPS from start to finish for 100 panels. .

The new fast Green function routines are being applied to determine the hydrodynarnic forces on a
body of arbitrary geometry undergoing large-amplitude motions. Forward speed effects can easily be
included for the submerged body.
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DISCUSSION

Grilli: Did you use in your program any pre-vectorized CRAY
routines that are not transportable? I think, in particular about
procedures like GATHER-SCATTER, permitting partially vectorized
IF-statements.

Magee & Beck: Conditional Vector Merge functions are used for
simple IF-statements. While the simple IF's can be vectorized,
these functions, which compute both results and then write out only
one answer, perform slightly faster. Similar routines are available
on many other vector machines such as Alliant. Other CRAY optimized
routines include FFT and matrix solvers, but these are also widely
available for various machines.

Yue: You have carried out your work specifically for the CRAY X-MP,
a very popular machine, yet one which has its special architecture
and data handling and computational characteristics. Please comment
on the general applicability of your work or possible modifications
for other machines.

Magee & Beck: We plan to port the linear time-domain code with the
vectorized Green functions calculations to a Stellar-1000. Very few
modifications should be required. The 32MB of RAM will be adequate
to avoid virtual addressing for up to approximately 500 panels. In
addition, since each Green function evaluation is independent, this
method is ideally suited for such a parallel-vector machine. The
inner DO-loop (say over field points) would still be vectorized,
and the outer DO-loop (then over source points) could be processed
in parallel. '

The program is also upwardly compatible with such machines as
the CRAY-2 and Y-MP. The availability of larger RAM on these
machines would permit a larger region to be covered by the inter-
polation scheme, reducing the number of asymptotic evaluations, and
thus producing a moderate speed-up. It is also possible that quad-
ratic instead of cubic interpolation could be used if enough memory
was on hand.

While local fast memory registers are arranged differently on
the CRAY-2, there are still enough data locations to avoid any
speed degradation. The special requirements for optimal code (such
as the minimum vector length for top speed) may be different on
this machine, but the method we have employed is sufficiently
simple that it should perform very well here too.
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