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AN ASYMPTOTIC SOLUTION OF THE SECOND-ORDER DIFFR.ACI‘ION»PROBLEM

by J. N. Newman
MIT, Cambridge, Mass., USA

Complete second-order computations for wave diffraction by axisymmetric bodies reveal that
the second-harmonic component of the pressure field is particularly significant at large deptks.
For large offshore structures such as tension-leg platforms, which are restrained by taut moor-
ings, the resulting contribution to the vertical pressure force and mooring loads may dominate
the first-order linear component.

The existence of a second-harmonic pressure at large depths is well known in the theory of
two-dimensional standing waves, where this second-order component is independent of depth.
The same phenomenon can be expected for a partial standing wave, resulting from wave
reflection by a two-dimensional body. Since the transmitted wave lacks such a component
there is a transition in the horizontal direction at large depths from the O(1) pressure far
upstream to the exponentially small pressure downstream. This suggests that the second-
harmonic pressure in the vicinity of the diffracting body may be more important at large
depths than the first-order exponential component.

A similar result can be expected in three dimensions, where the inhomogeneous free-surface
boundary condition forces a non-radiating second-order solution along the ray directly op-
posite to the propagation angle of the incident wave. This singular feature of the far-field
asymptotic solution was noted by Molin, and has been discussed extensively in connection
with the appropriate statement of the second-order radiation condition.

This discussion suggests that a connection exists between the far-field behavior of the quadratic
forcing function in the second-order free-surface condition and the slow rate of attenuation
with depth of the resulting near-field solution. It also suggests that an analysis which considers
only the far-field forcing function may lead to a relatively simple second-order solution which
approximates the dominant second-order pressure field acting o= the body.

TWO-DIMENSIONAL ANALYSIS

In two dimensions the second-order free-surface condition takes the form

¢ —4K ¢y = Q(z) ’ (1)

where K is the first-order wavenumber and the ‘quadratic transfer function’ ¢(z) involves
products of the first-order solution ¢;. A particular solution ¢; can be derived formally by
interpreting ¢(z) as an oscillatory pressure imposed on the free-surface, or simply from Fourier
transformation, with the result

" a€)de [ " cosk(z =8 uugy, (2)
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Here the contour of integration is deformed in an appropriate manner to conform with the
radiation condition.

If the depth |z| is asymptotically large, and exponentially small terms are neglected, the
leading-order contribution to (2) must come from the vicinity of k = 0, and if the integral
of ¢(z) over the complete free surface exists and is finite, (2) is clearly O(z-!). However,
when products of the first-order diffraction potential are considered it follows that while g(z)
vanishes far downstream, at a sufficient rate for the above estimate to apply, ¢(z) approaches
a constant value —4K'C far upstream in the direction opposite to the incident wave. This
constant is proportional to the product of the incident and reflected wave amplitudes; with this

normalization C is the non-wavelike constant in the potential ¢, far upstream, in accordance
with (1).

Since the local features of ¢(z) give a contribution inversely proportional to the depth, the
leading contribution to the potential can be derived from the simplified quadratic forcing
function

¢(z) = -4KCH(z). (3)

Here H(z) denotes the Heaviside step function and the horizontal coordinate is defined such
that the waves are incident from z = +-co0. Using generalized function theory to interpret the
contribution from (3) to (2), and assuming that the field point z = O(1), the integral over the
free surface is equivalent to —4x KC&(k) where § denotes the Dirac delta-function. On this
basis it follows that

s = -12-C+0(z"). (4)

Thus in the two-dimensional case the dominant pressure at large depths near the body is a
constant, equal to precisely half of the corresponding constant pressure in the upstream partial
standing wave, or the mean of the pressures far upstream and downstream. For sufficiently
large depths this second-order pressure clearly will dominate the corresponding first-order
component. 4

THREE-DIMENSIONAL ANALYSIS

In terms of cylindrical polar coordinates (r,9, z), with 8 = O the incident-wave direction, the
far-field approximation of the quadratic forcing function is defined as

q("a) ~ F(a)(xr)— 1/2 e—-‘xr(x +cos?) , (5)

where F(8) = —2iK?A? f(0)(1 — cos§) and f(8) denotes the angular dependence of the first-
order scattered-wave amplitude in the far field. Note that F(0) = 0, in accordance with the
fact that the scattered wave is purely progressive along the ray # = 0, whereas the forcing
function is non-zero and non-oscillatory along the ray 8 = x.

A particular solution analogous to (2) can be derived using Fourier-Bessel transforms, in the
form

oz ffvs [ e T O

182




g:; surface integral is over the free surface, i.e. the portion of the plane z = 0 exterior to the
y.

An asymptotic expansion of (6) can be derived for large |z|, by expanding the factor k/(k-4K)
in powers of k and integrating term-by-term. Neglecting contributions which are exponen-
tially small, this leads to a representation of (6) in terms of vertical dipoles and higher-order
multipoles on the free surface. The leading-order contribution, of order 27!, is

z ' '
¢z ~ ’s’:?/ [R? + p? - 2rpcos(d - a)]=*/?qdsS . ™

where R? = % + 2% denotes the spherical radius from the origin. Proceeding as in the two-

dimensional analysis, the far-field approximation (5) may be substituted in (7), and integrated

over the entire plane z = 0,

z L 2= .
g ~ m/o p‘/’dp/o F(a)exp(-1Kp(1 + cos a))

[R? + p? - 2rpcos(8 ~ a)]"%?da.

(8)

If the variable p in (8) is re-scaled in terms of R, the argument of the exponential function is
proportional to the large parameter K R. Thus the second integral in (8) can be evaluated by
the method of stationary phase, with the result

F(x)e'"/z

b~ 4(2x)1/3K3

/ dp[R? + p* + 2rpcosf)=/2, (9)
0 .

There is no contribution from the stationary point at a = 0, since F(0) = 0. After evaluating
the last integral it follows that

F(x)e"/4 z
~ 4(2%)'3K? R(R+z2) A (10)

¢a

For field points close to the vertical axis,

F(x)e'"/* 1

T 4(2x)3K3 1 (11)

$2

To test the approximations derived above, comparisons are shown in Figures 1 and 2 with
the complete numerical computations by Kim and Yue (1988) of the second-order pressure
distribution and vertical force acting on a circular cylinder of radius @ and draft d = 4a.
These comparisons indicate that our approximation is useful in describing the dominant part
of the pressure distribution and vertical force acting on an axisymmetric cylinder, at depths
comparable to or larger than the radius. It remains to be shown that useful predictions can
also be made for non-compact bodies, such as tension-leg platforms, where exact numerical
predictions are not available for comparison.

This work was supported by the Office of Naval Research and by the National Science Foun-
dation.
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Figure 2. Second-order, second-harmonic vertical
force on the cylinder (see Figure 1). The force is
normalised by the quantity pgA?. The asterisks
denote the corresponding results from the numer-
ical solution by Kim and Yue (private communi-
cation).

Figure 1. Approximation for the second-order,
second-harmonic pressure distribution on the ver-
tical axisymmetric cylinder as a function of depth,
on the weather sise (¢ = x, upper curve) and the
lee sise # = 0, lower curve). These results are for
a cylinder of draft 4a, where a is the radius, and
Ka = 1.52. The pressure is normalised by the
quantity pgA®/a. The asterisks denote the corre-
sponding results from the numerical solution by
Kim and Yue (1988).

1.00 ) T 1 7 | K
n -
0.80} -
0.60 -
040} =
0.20}- -
- e

0.00 ' R y 1

0.0 1.0 20 3.0 40
Ko

184




DISCUSSION

Natvig: Your work is for unidirectional waves. It would, however,
be of great interest to know what the effect on the sum-frequency
forcing directional waves would have? Is it likely that short
crested seas could worsen the problem of springing exitations?

Newman: I have not made calculations for short-crested seas but
this appears to be a straightforward extension of the asymptotic
analysis, with the total force proportional to a linear combination
of the first—-order scattering amplitude function of each separate
incident wave component. It would be very interesting to see the
results of this extension.
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