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Summary

A numerical evaluation scheme, including a complementary method ensuring accuracy when
both the source and field points are close to the free surface, is developed of a new
compact analytical expression of the Green function of ship motions at non-zero forward
speed. This expression has a genuine single integral form whose integrands are elementary
functions;it should permit straightforward computation and reduction of computer time.

Radiation and diffraction problems of 3-D bodies are solved with the panel method
evaluating the Green function by this scheme. Convergence of the solutions with increase
of the number of panels on the bodies is investigated numerically.

Comparison with measured hydrodynamic forces might not be strict examination
confirming the superiority of sophisticated panel method to traditional strip theory, for
the forces are not free from integration effects. Hence diffraction wave pattern around a
body is measured in model experiment and compared with the computed.

Evaluation of the Green function.

Green function G(x,y,z;x’,y ,z")  exp(L wt) is written in a single integral form
(Bessho 1977),

G(X,y,z;x',y',2')=(l/ry - 1/r; )/4=x -AT(x-X",y~-y',z+z2') /2%

(1)
vhere

- /2 +8
T(X.Y,Z)= [ke exp(kzs P)-sgn(cosf )k, exp(k, P)] do
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rs,1 =+ (X-x")* + (y-y")? + (zxz')?
P=Z+(Xcos 8 + Ysin@ ) (3)
Ki.2 =Ko /2 (1427t cos 9 £ ¢ 1+47 cos 8 )sec? @

and
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a =cos ' (1/41 ) (4)

B =cos ' (X/¥V XT ¥ YZ )-A-sinh ' (|Z! /¢y XE +YZ ) (5)

K, denotes g/U% and t=lw/g.

Eq.(2) is a genuine single integral expression of the Green function in the sense that
its integrands are elementary functions (integral whose integrand is exponential integral
is sometimes claimed to be single integral), while integration has to be done in the
complex plane. Notice that a given by eq.(4) is an imaginary number when <t is less than
0.25 and B a complex number.

Numerical integration of the first term of eq.(2), we refer to as ks-integral, is
straightforward. Singularity at 6=a-x is not essential unless t is just equal to
0.25. The second term, k,-integral, requires special consideration; integrand of this
term oscillates rapidly without limit and becomes infinite in magnitude as 8 approaches
to *x/2. Introduction of new variable of integration m=k,cos 8§ transforms the
ki1 -integral between 0=-x/2+ B and -%/2 into

o0
/ expl¢ (m)1/4/ 1-[Kem/ m—Keg t ) 1Z dm (8)
5
vhere
¢ (m)=Z(m— Kot )2 /Keti[Xm-yy (m— Kot )* - (Kem)? /Kol (7)
§ =k, cos(~xm /2+B) (8)

8 is a complex number dependent on X, Y and Z. Integration of eq.(6) may be done along a
contour in the complex plane going into the direction

- /4-1/2+tan "' (Y/IZ)Sarg(m)S n /4-1/2+tan ~ ' (Y/!Z!) (9)

as long as Z is negative or Y is not zero.

Qur method of numerical evaluation of the contour integral (6) is:

(1) Find a deformed contour starting from & on which the imaginary part of ¢ (m)
is constant and the real part descends steepest; this 1is done integrating differential
equation of the contour step by step.

(2) Integrate eq.(B) numerically along this deformed contour until a point beyond which
contribution from the remaining part of the contour is less than a specified error limit; .
actually convergence of this integration is very fast.

In this computation the contour must not cross the branch cuts of ¢ (m) and if the
starting point & is located left of one of the zeroes of ¢’ (m), Re[ ¢ (m)] will ascend
at the first stage of the contour until reaching to an appropriate location.

When both Z and Y are close to zero compared with X 2, our numerical steepest descent
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integration becomes slower in convergence; a complementary method must be introduced.
Integral (6) is divided into two parts: one until a certain value of m for the numerical
steepest descent integration and the other beyond this m large enough for the square root
of eq.(7 ) to be approximated by only the first term. Contribution from the second part
can be evaluated effectively noting that the corresponding integral is transformed into an
integral known as Dawson’s integral and using Newman’s result (Newman 1987)).

Solution of radiation and diffraction problems.

Our method is the simple version of panel method: the contribution of the Rankine terms
in eq. (1) for the surface integral on each panel is calculated using the method of Hess
and Smith; contribution of the wave term is obtained by representing a panel by a
concentrated source at its centroid. The centroid of the field panel is selected as the
field point at which body boundary condition is posed. Ve remark that although our
numerical results here are for submerged ellipsoids of revolution we discovered recently
the expression (2) is readily integrated analytically to provide a simpler analytical
expression for constant source strength distributed over a line segment or a panel. This
is more appropriate than the present monopole approximation for extending our computations
to the surface piercing bodies. Several computations are being carried out and will be
reported presently.

4 measure for satisfaction of the body boundary condition is €i; = | Bii-bii |
/(B ii +b i )/2 for radiation problem (the corresponding one is also given for
diffraction problem ) where B;; is damping coefficient of the i-mode motion obtained
from far-field velocity potential and b;; that obtained from pressure integration on
the body. Fig.l shows convergence of numerical solutions of radiation problem for an
submerged ellipsoid of revolution(L/B=2, d/B=0.75, d:depth of the body center) with the
number of panels in terms of ¢ 3; (4XN, ? is the total number of panels). CPU time
for N.,=8, for instance, 1is approximately 5 minutes on [FACOM M780/20. Although
convergence is fast, N, more than 15 appears to be required for achieving 99% accuracy.

Vertical wave force on an ellipsoid of revolution (L/B=5, d/B=0.75) restrained in head
waves is compared with the measured in Fig.2

Comparison of diffraction wave pattern

Fig.3 is a comparison of computed and measured diffraction wave contour at a time
instant around the same model of Fig.2 in head waves of A/L=1.0 and at Fn=0.2. This
contour is depicted with the scale as five times expanded into the y direction as the
actual scale; ship model is located between X=-1 and 1 with its centerline on y=0. Good
agreement of the wave contour implies that prediction by the panel method of added
resistance by diffration waves is supposed to be accurate.
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FIG.3 Diffraction wave pattern
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DISCUSSION

Newman: First let me congratulate you on having the courage to
numerically integrate this form of the Green function, in such an
elegant manner. Secondly, have you compared your calculations for
the submerged spheriod with the relatively simple "deeply sub-
merged" approximation, e.g. my paper in J.S.R. circa 19652

Ohkusu & Iwashita: I am afraid we did not compare your well-known
results for submerged spheriod with our computation. This com-
parison, I like to do as soon as I can, must be useful to validate
a part or our computation as well. I appreciate your suggestion.

Tuck: The explicit integral of G over a panel could be very
useful since it could save some numerical work. However, to use it
may require differences of the integral at the four corners of the
panel, which may lose some accuracy.

Ohkusu & Iwashita: I share your view that uniform source distribu-
tion over a panel may not improve significantly convergence speed
of computation with respect to number of panels, compared with
distribution of a mono-pole source on each panel. However the
explicit integral of the Green function over a panel will reduce
substantially numerical work particularly when the source and field
points are close to the free surface.

Sclavounos: We have found using a model 2-D problem that dropping
the short-wave length system in the wave-source potential that the
integrated forces are not affected substantially. Since this sim-
plification will reduce substantially the computational effort, it

would be interesting to report your experience in the three-dimen-
sional case.

Ohkusu & Iwashita: Most cases for submerged bodies the short term
component of the wave source potential does not seem to affect
significantly the integrated forces. However, some examples for the
steady force in following waves indicate that its effect is not to
be ignored. I would like to remark that wave length varies contin-
uously from the longer to the shorter wave component for 3-D at the

propagation angle a0=cos‘1(l/4t), and we have no so clear distinc-
tion between them as in 2-D.
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