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In (1) and (2), a boundary element algorithm is presented which models
in the time domain the propagation of steep, but not breaking, waves and
their interaction with fixed and floating bodies performing large motions.
The question arises if the method can be applied reliably in its current or a

suitably extended version to model fully the capsizing in waves of ship-like
forms.

Of particular interest is what seems to be the critical phase of
capsizing when the deck is to a large extent or just entirely submerged. The
sharply varying added mass, reaching negative values, and large damping
forces, which are known to occur on heaving bodies in such circumstances,
e.g. (3) and (4), and the disappearance of restoring forces, suggest a
dynamics of body motion significantly different from the better known
conditions for surface piercing bodies.

Prior to an attempt to perform the nonlinear time domain modelling, a
series of frequency domain 1linear computations was .carried out to examine
possible stringent gridding requirements hinted at in (3). The nonlinear
time dependent algorithm was reduced to an algorithm for a fixed control
domain with the boundary determined by the free surface and two vertical
control boundaries which extend to depth n/k, where k is the wave number.
The bottom boundary was removed. The linear frequency domain free surface
condition was imposed, and the time domain condition on the control
boundaries was reduced to 9¢/9n = iké¢. As before the boundary element
governing equations were used, with the fundamental solution 1n r (P,Q) and
constant density centrally collocated panels.

A series of computations was performed, of added mass and damping
coefficients for the shallowly submerged square body of half breadth B. In
Fig. 1, the results of a convergence test are shown, in which, for the body
submerged at h=0.1B, a fine grid was applied on the body and on the free
surface above the body, 1xB, and then extended on the free surface in both
directions. Results were insensitive to further refinements of the grid.
The test shows that the influence of the flow features pertinent to the space
above the body, extends to a distance comparable with the dimension of the
body. In Fig. 2 a comparison with the close-fit method computations
presented in (3) shows a good compatibility.

In Fig. 3, the forces exerted on the oscillating square are shown as
composed of contributions from excitations applied on the top and bottom
surfaces. The forces on the oscillating body are closely approximated by
those ‘due to the excitation on the top surface. However, it is interesting
to observe that the peak of the damping coefficient and zero of the added
mass coefficient correspond to the resonant response to the excitation at the
bottom, and therefore to the resonant response in the gap above the body.
The negative damping coefficient due to the excitation at the bottom does not
have the surprising physical meaning. The damping coefficient for the force
exerted on the bottom is positive as follows from Fig. 4.
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The amplitude and phase patterns of the potentials generated on the free
surface by the excitation at the bottom, at the frequencies corresponding to
the characteristic features of the curves of damping coefficients, Fig. 4b,
are shown in Fig. 5a and 5b respectively. The body extends between grid
points 86 and 95. The phase angles are a -180°, with a given in Fig. 5b,
then the phase of -180° refers to quantities in phase with the acceleration.
It is seen that a perfect trapping mode of response, with the zero damping
coefficient at the bottom, is achieved at KB = 0.1473. The standing wave
patterns extend approximately over the distance of 3xB on both sides of the
body. This corresponds to the fine discretization region which provides
sufficient convergence of the added mass and damping coefficients, Fig. 1.

For the excitation applied at the deck, Fig. 6a and 6b, the standing
wave patterns do not extend over the entire breadth of the body but change
into a long wave (small local wave number) patterns in the 3xB vicinity of
the body. The phase angles are a -180° for 0Sa$90 and a for a<0, with a
given in Fig. 6b. The phases of the wave patterns are shifted by
approximately 100° with respect to the corresponding bottom induced patterns.
Since the deck excitation dominates the generated forces, this results in the
characteristic shape of added mass and damping curves shown in Fig.2.
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