Second order deformation of the free—surface
around a vertical cylinder. Part II

Y-M Scolan  B. Molin
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At the third workshop B. Molin and L. Boudet {1] proposed a method to calculate the second—
order diffraction potential around a vertical cylinder; the purpose of the study being the extension to the
case of multiple cylinders. Even though this method provided good results concerning the second—order
pressures and loads on the cylinder, some difficulties appeared for the correct modeling of the second-
order free-surface elevation. The reasons are essentially related to the discretization of the free—surface
which must be refined enough but also determines the size of linear systems to solve. We propose
here an alternative method which permits to shorten the computational domain and gives some criteria
concerning the matching of inner and outer solutions on the surrounding surface.
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figure 1 : description of the domain

We recall the outline of the method. The basic idea results from considerations on the second—
order diffraction potential ¢(Dz) at large radial distances, where two components may be identified : a
locked component (¢ ) satisfying the non—homogeneous free-surface condition for which the two leading
terms in 72—' and 7}; can easily be derived, and a free compouent (¢r) satisfying the homogeneous free
surface condition.

Assuming this decomposition to hold on a fictitious cylinder (X) at a finite distance from the
physical cyiinder (C), a Sommerfeld type radiation condition for (¢r) can be formulated as :

dr, —ikodr =0 at r=Rg (1)

and an inner Boundary Value Problem (P) is derived :

AP =0 in the fluid (D) (2)
g¢(2) 4“,245(2) =a on the free-surface (F) (z = 0) (3)
(P) ¢(2) ¢(":z on the cylinder (C) (r = a) ‘ (4)
¢(2) =0 on the bottom (3) (z = —h) (5)
(¢(2) —-éL)r = 1L20(¢( ) ¢L) on the fictitious cylinder (L) (r = Rg) (6)

o depends quadratically on the incident and diffracted potentials of the first-order; it can be expressed
as follows :

@
alw?d

—){D? + 2I D} + ————{2I,.D, +3 IaDa+D + - D,} (7
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227




where I = ¢'#7 %% and D denotes the local complex amplitude of the first-order diffracted waves. ¢(2)
is the solution of the second-order problem without any perturbation of the body. ks is the solutlon
of the linear dispersion relation for the double frequency : 4w? = gkagthkaoh.

This problem (P) is classically solved with the integra.l equation method; however we have found
that a good modeling of the free-surface elevation requires a very refined discretization. Moreover, we
are not able to control correctly the matching of the inner and outer solutions on the fictitious cylinder.
Thus we focalized our attention on the decomposition of ¢D into ¢. and ¢F on (X).

Locked components : they are solutions of the equations (2),(3),(5) of the problem (P). «
can be developed as : a = o' + a% where :

; lkr(1+ a'd(6 aid(g
‘(r ) = —TF— (a (0) + —IES'.—)' + '('%%'22 +....) (8)
dd _ B afd(8)  25%(9)
o (7‘,0) - kr (al (8)+ kr + (k‘l‘)z + . ) (9)
This decomposition suggests to develop ¢r in the same way : ¢p = ¢ + ¢ where :
. shr(l+cool) f d(o z) f d(e z)
id _ id 2 3
¢L - \/E‘ (f‘ (0 Z)+ 7‘ + (kr)g "") (10)
dd(g. 2 4d(9, 2
$3d (f 49,2) + 2,& )4 3(k(r),)+....) (11)
by replacing successively ¢'¢ and ¢4¢ in the Laplace equation, differential equations in z are obtained :
fi%, = 2% (1 + cos)fjd = F"‘(f S £13)) (12)
J,u szdd F‘d(f ’ : o] )dfl (13)

which are solved as soon as the right hand sides F*4 and F“ are known, the integration constants being
determined by the conditions (3) and (5). Their analytical calculation becomes rapidly tedious, and i m
our numerical application we truncate the summation at the term in 0(3;15;) (i.e. up to the terms f3¢

and f§d).

Free components : they are solutions of the equations (2),(3),(5) of the problem (P), but a = 0
and we add the radiation condition (eq. 1). The solutions are well known. We can develop them on a
basis of eigen—functions. We express them as follows :

chhn(s 1) 52 40 5 B S AQ Kk o (14
oF = chkmh ZA Hm(kzor)cosm0+2cosk2,-(z+ ) Z m(k2ir) cosm (14)
m=0 i=1 m=0
and we note them :
+00 400
F= ZAS:3¢Fm.' (15)
m=0i=0

H, and K, are respectively the Hankel functions and modified Bessel functions. (k2i)i=1,.0 are the
solutions of the relation : -5‘5 = kaitan(kyh).

Finally the Boundary Value Problem to be solved is nearly the same as (P) but the equation
¢(2) = ¢r, + ¢, will be the new boundary condition on (X) which assumes only the matching of
normal derivative of the potential. We will see later how we match the inner and outer potentials.

Integral equation for ¢g) : by replacing the Neumann condition of (P) in the following integral
equation :

2 — /a  #Gnds =~ /o , Génds ' (16)
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where n denotes the inner normal, (0D) the boundary of (D) and G the Green function (we add to G
the symmetrical source with respect to the bottom so that G, =0 on z = —h)
we obtain

4“)2
2m65) — / $(Gn+— -G)ds - / ¢6PGnds - | ¢PG nds =
(F) g (©) (2)
Jp 5 cder [ o2-Ga N e
- -Gds + . a—/ éLn - Gds — Am-/ in - Gd 17
"9 © " ® ; Zo: ' (z)wm"" ’ an

This equation is solved using a panel method with the unknown potential assumed to be constant over
the surface of each panel. However the coefficients AS,":Z are still unknown, so the right hand side of
eq.(17) is decomposed in My, - M; + 1 terms and we solve the linear system for each of them. It remains

to match the inner and outer potentials on (I). ¢g) and ¢p are developed in series with the same
coefficients thus, by minimizing the following functional J :

J(M) = 16D - ¢ - drilmex) (18)

we obtain the coefficients AS:} : |I.]] denotes a norm which depends on the numerical scheme; in our
numerical application we used the Householder’s least-square method.

Matching on the surrounding cylinder

As mentionned before, the choice of Ry is quite determinant for the matching of ¢(D2) on (X); so we
defined three criterions :

e matching of the right hand side (a) of the free-surface condition. We have to make sure that the
asymptotical expansion (a®*¥P) provided by eq.(8) and (9) (to the truncation orders retained
for ¢‘,f and ¢‘,’j’) is correct. Thus we define an error § as follows :

= "a - aaazmg.” (19)
m“"’“"“n{o,r}

& only depends on kr and the geometry (a, ), thus the choice of (4, a, A, k) implies that of Rx.

e the truncated locked components do not exactly verify the continuity condition in the fluid. So
we calculate the laplacian of ¢ on (T) - by Finite Difference Method for instance — and we check

that :
A (M) A3 (M)
. | <e 20
{ 2k3(1 + cos 0) ¢l 4k247 M(r8,3)e(T) B ()

the value of € gives an idea of the commited error concerning the expansion of locked components.

o the discretization of the free-surface must be refined enough to have about 6 panels per second-
order wave length (A(?) = £&.).

Results and comments
We can find three main advantages to this alternative method :

~ better evaluation of the free waves.

— optimization of the position of the surrounding cylinder : higher order representation (in
kr) of the locked waves and the use of modified Bessel functions permits to shorten the
computational domain.

— numerical advantages :
1) resolution of real linear systems since the Sommerfeld radiation condition does not appear
explicitly in the integral equation anymore.
2) we use the same discretization of (X) for the resolution of integral equations and for the
least square minimization of J.
3) extended visualization of the free—surface since we know analytically the outer solution.
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figure 4 : free-surface elevation, contribution of ¢‘,§)
for re[35, 70] the elevation is calculated semi-analytically
real and imaginary parts are represented
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DISCUSSION

Ursell: Locked components: I agree that the imposed surface
pressure for the second-order potential involves the factor

exp{ikr(l+cos 0)} but does it follow that the potential itself

involves this factor? There are no obvious harmonic functions
involving such a factor, neither is it clear to me that geometrical
interference will lead to parabolic wave crests. Question: Are the
locked component terms really needed? Another question: Is there
any solid evidence of the mathematical existence of a second-order
potential satisfying the surface pressure and the radiation condi-

tion at infinity, or are the second-order waves reflected by the
first-order waves?

Scolan & Molin: We agree that our reasoning is based more upon
physical intuition and engineering needs than upon correct
mathematics. We do not know what is a proper radiation condition
for the second-order diffraction problem, and we leave that point
to mathematicians!

We want to emphasize that the proposed expression of the

locked potential is only valid asymptotically (for R-9e) and that

it is only a component of the total second-order diffraction
potential.

Yeung: The point was made that irregular frequencies could occur in
such a method of solution. It was pointed out in my work of 1973
(Yeung, R.W., Rept NA-73-4, Univ. of California, Dept. of Naval
Arch.) and also quite well-established since then the use of simple
source formulation in a manner similar to my 1973 work is free of
irregular frequencies since the standard Green function is not
involved. I should point out that a similar method was developed by
Shimada (J.Soc. of Naval Arch., 1986) for the 2nd-order diffraction
problem. I want to commend the authors for a very careful piece of
numerical work.

Scolan & Molin: 1) We agree with the discussor that, if a sommer-
feld condition like (1) (and like is used in his thesis) is applied
on the matching cylinder X, the homogeneous problem associated
with (2)...(6) only admits the trivial solution.

In the method presented here the boundary condition (6) is

replaced by a Neumann conditon. As a result, if the radius Rg of

the matching cylinder is such that '

In' (k208) Yn' (k2oRe) ~Yn' (k208) Jn' (k2oRe) = 0
for some value of m, the associated homogeneous problem admits non
trivial solutions: the natural modes of the annular region inbe-
tween the two cyllnders In such case the solution of the problem
we solve is not unique and we should get into numerical trouble. We
were surprised that no disagreement of this kind seemed to occur in
our computations.

2) We know of the work by Shimada (1987). We do not agree with his
improved expression of the locked potential.
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Chau: Would you consider that the differences between your result
with that given by Kim and Yue (h/a=4) near the free surface may
due to the fact that you have only retained two evanescent modes in

your expression of ¢F, since we know that more evanescent modes may
be required at larger water depth.

Scolan & Molin: In fact the use of evanescent functions
(Kp(koi Rg)), which decay exponentially in the radial direction is

not completely justified since the argument kjpjRegis very large;

but no numerical problems occur because of the normalization of
Bessel functions. A systematic study of the convergence of the
results as a function of number of modified Bessel functions has
been made. But we established that only a couple of them is neces-
sary in the computation.

As for the difference which appears at the waterline (for the
comparisons made with Kim and Yue's results), it is only due to the
discretization.
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