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SUMMARY AND INTRODUCTION

We consider steady water waves in three dimensions,which may be considered
to be slender in the same sense as "slender bodies",. That is, the wave shape
is moving relative to the water in a direction which is nearly perpendicular to
its maximum slopes. For example, slender waves are generated by rapidly moving
ships and boats. We describe an initial study of waves alone with specia
emphasis on their mode of breaking. The work will soon be expanded to include
moving bodies.

MATHEMATICAL DETAILS

The waves are taken to be moving with constant velocity U in the z
direction, and with a "slenderness" expressed by supposing they have a typical
long dimension of length L in the z direction with variations in the transverse
x, y directions on a length scale b where

% = € << 1.

Their mathematical description is as steady waves on a current U. Dimensionless
variables are introduced, with * denoting dimensional variables, as follows:

x* = bx, y* = by, z* = Lz, ¢* = (gb)%b(Fz+¢) and (* = b(

where ¢* is the velocity potential, z* = (*(x*, y*, t*) is the free surface and

1
F = U/(gb)? is a Froude number. With these variables Laplace's equation and its
free surface boundary conditions become

Pxx + Pyy = -€°0,,
Fe(. + ¢x(x - 4y = ‘f2¢z§z
Fedo + 49« + 39,2 + ( = - 4 €%¢.2.

A change of variable to the pseudo-time: t = z/¢F and neglect of the 0(e?) makes
the above equations directly equivalent to those for the unsteady motion of
two-dimensional water waves in the (x,y) plane. This permits computation of
steep and overturning waves by boundary-integral methods such as the accurate
and efficient program developed by Dold and Peregrine (1986) and its extensions.
We note that in such programs the free surface is followed with a Lagrangian
representation (X,Y) of surface points and

g Fog, v+ 4y - v
Pseudo-time t, and the true timez t*, are related along particle paths by
by¥dt _ g, L
gl dt* FZ ¢

which reinforces the implicit assumption that €F = 0(1) in order that the last
term may be neglected.




BREAKING- WAVE EXAMPLES

Little is known about breaking, or limiting form of steady waves in three
dimensions. Roberts (1983) gives some tantalizing results based on a Fourier
series approximation. The "slender" case we illustrate correspond to linear
two-dimensional standing waves. In figure 1 a selection of breaking examples is
given to show the wvariety of cases that can occur with sinusoidal initial
conditions as indicated. This variety and the range of behaviour in other
breaking-wave examples has stimulated a closer study of the one feature that
appears to be common to all breaking wave flows prior to the stage of jet
formation. That is, there is a strong convergence of liquid to form tﬁe jet.

CONVERGENT FLOWS

Convergence is obtained by taking two opposing uniform flows. A smooth
transition is obtained by initial conditions of a flat surface with a horizontal

velocity component of
#x = Uo(tanh x/b,)

The water depth is unity.

A wild variety of shapes occur, several examples are shown in figure 2. As
may be seen, some relate to the standing wave examples and others develop as
propagating waves. Details of these flows are under study and we find that the
weakly three-dimensional interpretation of the flow field is very helpful. For
example, the pressure field beneath these unsteady waves 1is vital to
understanding their dynamics. Large pressure gradients, with a rapid increase
in time occur. Gaining an understanding of these flows is difficult in two
dimensions where Bernoulli's equation has a dominant ¢. term. Once this is
translated into a ¢, term in the third dimension our greater familiarity with
steady flows eases interpretation.
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Figure 1

Kcey

Lo=a,cos(x), ¢g=-azcos(x)

Parameter values
Fig a, a,
A 0951 0.3
B 095 | 0.95
C 095 14
D -0.6 0
E -0.6 -0.9
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DISCUSSION

Tulin: These results are so interesting that it would be very desirable to observe them
experimentally. A suggestion: the case of a two-dimensional valve opening,.

t=0 atwmos. t>o0 7/ \
3~ C ~— /= — C (‘E)
F = Po P =r°
Anderson: Setting up the situation stated may be difficult: the flow here, which is initially
stationary, may depend on ¢(t). In the high-pressure cases, it would probably be adequate
to pull the plates apart very quickly. For lower pressures, however, the effects of different

plate movements may be significant. Setting up any experiment will have problems in
keeping the more rapidly convergent flows smooth and free from violent splashing.

Tuck: If you want to study free surfaces behind a high-speed slender boat, why do your
results show a positive free surface? Surely you should start with an initial profile involving
a depression of the free surface?

Anderson: In my lecture, I showed some results from the convergent flow computations
that are similar to the central part of the wakes forming behind a wide boat and a fast,
thin boat or water-skier; see Fig. 3. The slender body theory states that F~2¢; must
be small, and the flows in Fig. 3 have low enough ¢, to keep this term small when F' is
estimated for the ‘real’ flow situations suggested.
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Figure 3. Two possible wake forms.




The curves shown can either be thought of as representing
the flow at the bottom of the depression left by a boat (see —\52/__—
right), or possibly as the flow after such a depression has closed,

in which case it would be above the free surface (as calculated):

——-A,\/: ‘____-——52—-—-

Grue: How does surface tension modify the pictures of your flow computations? Can the
effect of surface tension be included in your model?

Anderson: Although the inclusion of surface tension seems straightforward, we under-
stand that problems have been encountered by researchers using other boundary-integral
programs. We can guess that surface tension will probably suppress the production of
spikes, and circularise the ‘bulbs’ seen in the faster, small-scale flows. In the axisymmetric
case, the bulb in free fall will become a drop of water and may detach, as is often seen
after a drop has hit the surface of calm water which then splashes back up in a jet.

King: In your two-dimensional calculations, did you find any waves on the free surface?

Anderson: For slower flows, with U <2, the flow develops into a bore moving outwards;
this bore will catch any gravity waves moving outwards from the convergence at the centre.
Faster flows will probably become a quasi-steady flow as the inflow continues. This flow
will rise up and then overturn like a fountain:




