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Introduction

At the third workshop we presented results for the second order diffraction
potential, and discussed certain aspects of numerical methods which we were
investigating for arbitrary three dimensional bodies. These have now been
developed further‘?'? and applied in the assessment of TLP springing. To
verify the methodology we have also developed a series solution for a
vertical cylinder. At first sight this solution does not appear to satisfy
the inhomogeneous second order free surface boundary condition, and the
purpose of this note is to reconcile this apparent conflict,

Formulation

We de51§nate the second order incident and scattered potentials as ¢ 2

and ¢ ¢ respectively. Our aim is to evaluate ¢sm) for a vertical

c1rcuiar cylinder of radius a standing in water of depth d subject to
regular waves of frequency w. We use polar coordinates (r,f#,z) with the
origin where the axis of the cylinder intersects the plane of the mean free
surface, and the z axis p01nting vertically upwards. The free surface

condition satisfied by ¢ ) is of the form
(2) 2
8¢s 4w 2
- — d = F(xr,6)
dz g
= Em emFm(r)cosmﬁ (1

The solution for $ @ may be expressed as a mixed distribution of sources
and dipoles over the body surface S, together with an integral over the
free surface SF In terms of a llnear wave source Green function G(X,X 0)
pulsating at frequency 2w, the general form can be abbreviated as

ac ¢ (2)
¢S<z> - - ||t4g @+ ¢ — ]ds - FGdS (2)
on dn
S, Se




In the case of the circular cylinder, it is possible to derive a Green
function G; which, in addition to satisfying the homogeneous free surface
condition, and seabed and radiation conditions, also satisfies the
condition of no flow through the surface of the cylinder®. We have then
the explicit solution '

3¢ (2)
6.2 = - G.— ds - FG_dS (3)
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The term designated I corresponds to free wave contributions satisfying a
homogeneous free surface boundary condition. It is the second term which
concerns us here, which we shall call ¢_ ‘?’. This corresponds to a locked
wave component, which is required to satisfy (1).

The appropriate Green function is

_l « @®
Gy = ;— giosigkm(ro,r) Zn(nnzo)Zn(nnz)emcosmﬁocosme (4)
n
where
‘ Im'(mna)
H (r,,r) = -[-—7——-— Km(xnr<) - I (s x )]K (x5 1) (5)
K (x_a)
m n
Ann
z(kz) = | 1¥ cos &_(z+d) (6)
sin2nnd + 2nnd
r, = max(ro,r), r_ = min(ro,r)

and x_are roots of k tank d = 4w?/g. Hence for the circular cylinder we
obtain

(2 . _ © ©
¢SL (ro,eo,uo) zZ = Pmm(ro)Zn(fcnzo)Zn(O)emcosmﬁ0 (7)

m=0 n=0
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where

2n, o

1
mero) e am(ro,r) F(r,8)rdr cosmédé
2r
- j;%m(ro,r) F;(r)rdr (8)

Because each term Zn in the series (7) satisfies the homogeneous free
surface boundary condition it is not obvious that our expression for ¢y (2)
satisfies (1). We therefore have to examine the problem more carefully.
Substituting (8) into the left hand side of (1) we have

a. @ bw? 4 %sin(-x z.)
SL Q @ n n—o
- —¢. Y =« = ¢ cosmf, ZP_(r.)
3 S w0 ok d + 26 d
z g 'cn n
9
«© N «©
= % ¢ cosmf_[ ¥ S + ZS ]
m=0 ™ 0" p=g ™ n=N+1"0
where

2 .
4nn 51n(-nnzo)

S =P (r) (10)
™ o sin2nnd + 2nnd

We can now examine the asymptotic behaviour of the terms S A for large n.
Integrating (8) by parts we find that as n—=

F (ry)

Pa(ry) =

K
n

Since also then nhd -+ nw, we obtain

2 sin(-nﬂzo/d)
Smn RO Fm(ro)
n n




Hence from Jolley(“

© 2 ° sin(-nrz,/d) .
D T T EE, = Fy(x) (L2y/a) an

We thus discover that in the limit as z, -+ 0, the right hand side of (9)
does indeed tend to F(r,#) as required by (1).
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