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1) Introduction sition_of the probl

The propagation of water waves in the linear mode is governed by the following system
of equations :

3
A¢=0 mQcRk
82
(1.1) 190,99 o onry
& ot oz
d9
—= on I’
on B

N
o)

> (x,y)

a(Th)

(Ta) Q
{

*ﬁg k\k (1B)
h

Where Q denotes the region occuped by the fluid, I'r is the free surface and I'p is the
bottom of the ocean .

The function ¢ represents the velocity potential : at any point (x,y,z) in €2, the velocity of
the fluid is given by :

V(X:er) =- V ¢ (x:y’z!t)

The function h is the source term.




We shall assume for our purpose that it compactly supported. The linearized mathematical
model (1.1) is valid for the study of the irrotationnal flow of a perfect fluid as long as one
is interested in weak amplitude waves. In this case, the free surface is taken to coincide
with the plane z = 0 (see figure 1.1) and the shape of the wave at time t is given by the
surface :
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In many practical situations the domain € is unbounded in the horizontal directions x and

y and has a constant depth L outside a bounded region, i.e. for x2 + y2> R2. Of course to
be able to perform numerical calculations, one is led to bound artificially the domain of
computation. This truncature procedure naturally poses the problem of the boundary

conditions to be prescribed on the artificial boundary (I"y). We propose here a family of

absorbing (or non reflecting) boundary conditions for both the 2D and the 3D case. This
solution should be an efficient alternative to a completely different approach proposed

previously by LENOIRE and VERRIERE [5] and is clearly related to the artificial boundary

conditions currently used for other mathematical models of wave propagation ([1],[2]).

The absorbing boundary conditions

Before going into the details of the construction of absorbing boundary conditions, let us

recall the main properties of the mathematical model (1.1). Although it does not
correspond to a strictly hyperbolic problem, it has many properties analogous to the
standard model of acoustic wave propagation.

In particular, the energy associated to ¢ :
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is conservered as soon as the source term is equal to 0. Moreover the physical
phenomenon involved is horizontal wave propagation, the vertical component only
influences the amplitude of the wave. The variations of the propagation velocity, and
therefore reflexion, transmission and diffraction phenomena are due to the variations of
the depth.
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Neverthless it is important to emphasize some differences between (1.1) and
classical 3D wave propagation models :

- waves described by (1) propagate in fact with an infinite velocity, due to the

Laplace equation for ¢
- The propagation concerns only 2 space directions (and even 1 space direction in
dimension 2)
- In the case of a constant depth, harmonic plane waves are dispersive and obey
the following dispersion relation :
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where  is the pulsation and k = (kx, ky) is the wave vector.
For the construction of appropriate non reflecting boundary conditions, all these specific

properties, and in particular the dispersion phenomenon, have to be taken into account.
The method we follow for the construction is now rather classical :

63




- we construct,using the fact that the depth is constant in the exterior region, an
exact transparent boundary condition (i.e. a condition for which the solution in the
bounded domain coincides with the restriction of the solution in the unbouned
domain).

- we approximate this boundary condition with the help of purely local operators,
namely differential operators.

This step of approximation is of course the most important one and must be carried out in
such away as to satisfy the following criteria :

- the approximate problem in the bounded domain must be mathematically well-
posed (*)

- the numerical approximation of this new problem must be easy and cheap. This is
a practical criterion.

- the parasitic reflections due to the presence of the artificial boundary must be
minimized. This is a precision criterion.

The solution we propose differs according to whether one considers 2D or 3D problems :
i) In the 2D case, the approximation consists of two phases :

- we first get a local approximation in space by discarding the evanescent waves.
- we achieve the completly local approximation in space and time via an

approximation of the dispersion relation. More precisely if IKI = of(w) denotes the

solution of equation (2.2), we replace the function f(w) by a rational function
(ifg=L=1):
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where ay and by are real numbers which must satisfy :
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The resulting absorbing boundary condition involves auxiliary unknown functions
defined on (I',). It can be written
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*) This is a stability criterion .
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i) In the 3D case, the approximation procedure requires a third phase to take into account
the horizontal direction tangential to the boundary. Physically this corresponds to the fact
that we have to deal with waves reaching the artificial boundary with different angles of
incidence. In order to treat this difficulty, we adapt the classical method developed by
ENGQUIST-MAJDA [2] for acoustic waves.

The outline of our talk will be the following one :

1°) Heuristic presentation of the construction of the approximate artificial boundary
condition

2°) A short mathematical analysis of the wellposedness of this problem (we had to
develop a generalization of the well-known theory of KREISS[4] for parabolic systems -
(2.4) appears in this framework as a stability condition [3])

3°) A presentation of both 2D and 3D numerical results validating our approach.

REFERENCES

[1] A.BAYLISS, E. TURKEL : Radiation boundary condition for wave-like
equations" Comm. Pure. Apll. Math. Vol 33, pp.707-735 (1980).

[2] B. ENGQUIST, A. MAJDA: "Radiation bounduary conditions for acoustic and
elastic wave propagation" Comm. Pure Appl. Math, Vol 32, pp 313-357 (1979).

[3] P.JOLY, M. ESQALI: "Absorbing boundary conditions for linear water waves
(I) . The 2D case" INRIA report, to appear (1990).

[4]  H.O. KREISS "Initial boundary value problems for hyperbolic systems",
Comm. Pure Appl. Math, Vol. 23, pp.277-298 (1970).

[5] M. LENOIR, M. VERRIERE : "Computation of transient gravity waves"
4thWorkshop and floating bodies, Oytsee, Norvége (7-10 Mai 1989).

[6] J.J.STOKER "Water waves" Pure and applied mathematics , vol. IV (1957).

&5




