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Introduction

This study concerns fluid-structure interacting systems such as the behaviour
of a ship under the action of swell, or the scattering of an acoustic wave by
an elastic body. For such problems, one of the most important question is to
work out the excitation frequencies which make maximum the amplitude of the
motions of the structure: these frequencies are called "resonance
frequencies". Let us stress that these are not eigenvalues as in classical
conservative systems, for the amplitude of the response remains finite : this
prevents use of classical methods for their computation.

In the case of a one-degree-of-freedom floating body, X.J. WU, Y. WANG and
W.G. PRICE [1] show, by an asymptotic approach, how to compute these resonance
frequencies: they search complex eigenvalues (i.e. complex excitation
frequencies) of the system on the assumption that their imaginary parts are
small, and give an expression which provides a first approximation of their
real parts (i.e. of the resonant frequencies).

Our approach is somewhat different, although the basic idea is the same: we
first define these complex eigenvalues, the "scattering frequencies", which
are clearly identified as solutions of a nonlinear complex eigenvalue problem;
the next step consists in expanding the solution of the problem in the
vicinity of a scattering frequency in order to compute the location of the
resonance and the associated amplitude of the solution. The method is
explained here in the case of the 2-D sea-keeping problem for which we will
present numerical results.

1. The sea-keeping problem: classical approach

Let us consider a rigid body (C) which floats (without forward motion) on the
free surface of a fluid. When the system is at rest, the fluid occupies an
unbounded domain Q € R? whose boundary 00 is defined by the "unperturbed free
surface" (SL), the bottom (F) which is supposed to be rectilinear, and the
hull (I') of the body (figure 1); n will denote the unit outward normal on o .
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The axes (Ox) and (Oy) are defined as shown in figure 1. The fluid is assumed
ideal; let ¢ be the velocity potential function. The motions of the body
around 1its equilibrium position will be described by the vector U € R3 whose
components characterize its 3 degrees of freedom (2 translations and 1
rotation).

We study the "linearized steady-state problem", i.e. the periodic motions of
the system in the case of a sinusoidal incident wave of frequency w. We are
thus led to the following problem (expressed here in a non-dimensional form):
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where v, is the positive solution of: th(voh) = —
0

M is the 3x3 mass matrix of the body; ¥ is the hydrostatic stiffness matrix. N
is the "generalized normal" on every point X of the hull (I'): N(X) = (n,0XAn).
Fg et Fy define the external forces (they depend on the incident swell).

It can be proved that this problem is well-posed except maybe for a sequence
of frequencies W/ (the existence of such eigenvalues of the problem seems
unlikely but until now, no uniqueness theorem for the coupling problem has
been proved). Different numerical methods can be implemented to solve this
problem: the integral equation method, the coupling between finite elements
and integral representation [2] or the localized finite element method
([23,[3]). We will use here the latter to describe our method.

Let ) C 0 be the bounded domain delimited by the two vertical segments 21 and
Z, which are chosen such that I'c 80 . SL and F refer to the parts of SL and F
which are contained in 30 ; ﬁt , SL,. F, (for £=1,2) denote respectively the
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left and right parts of O\, SL\§L and F\F (see figure 2).

Let wus consider, for £=1,2 , the operator Cl(wz) which associates to a given
function x defined on ZX, the normal derivative of the solution of the

"exterior problem", 1i.e. the potentiel function 52 which satisfies
(1) in Q,, (2) on SL,, (3) on F,, the radiation condition (6) and EQ = x on
Z, - By the method of separation of variables, Ce(wz) can be expressed as a
convergent series (which will be truncated for numerical applications). One

can easily prove that the solution (5,6) of the new problem (set in the
bounded domain ) :

R (1) in@ 5 (2 on8 ;3 () enF ; (W) onl ; (5)
(® ;) = A
w? (6)' 8 ¢ = —Cl(wz)[fblzl) on £, (£=1,2)

n

is such that @ is the restriction of the solution ¢ of (¥ ,) and U = U. Under
w

variational form, problem (? ,) writes as:
w

(§;2) Find ($,ﬁ) € Hl(ﬁ) x €3 such that : §(w2)($,ﬁ) = F(w?)
w

where ¥ depends linearly on F@ and Fu' and §(w2) is a linear operator which

depends continuously on w’ (see §2). Problem (@ o) 1is solved by finite
w

elements. For each excitation frequency w in a given frequency range, we can

then compute the total energy of the body, which defines the "response curve"

of the body: our purpose consists in locating the maxima of this curve (the

"resonant states") without computing the whole response curve.

2. Scattering frequencies of the coupled system

The basic idea of the method lies in the extension of problem (§ ,) to the

w
case of complex frequencies. We first construct explicitly the analytical
continuation of Cz(mz) (which will be denoted by C,(v), v€C ) in the complex

plane. Therefore the "extended problem" (?v) formally obtained by replacing w?
by any complex number v makes sense; its variational formulation writes as in

(@ 2). where §(v) is now defined for complex numbers.
w

If v has a positive imaginary part, then problem (§%) is always well-posed and

its solution tends to the solution of (? 2) when v tends to w’. The operator
w

-~ - "1 -~
R{v) = (S(v)) (which associates to the data ¥(v) the solution of (%,)) is an

analytical function of v if Jm{(v) >0 . One can prove that it has a
meromorphic continuation in the lower half complex plane. In other worlds, if
dm(v) < 0 , problem (P,) is well-posed except on isolated singularities which

are poles of ﬁ(v); these poles are the "scattering frequencies" of the coupled
system : they are solutions of the following non-linear eigenvalue problem:

85




3. Approximation of resonant states

The discretization (by finite elements) of (?V) leads us to a finite
dimensional problem : H(v) X = F(v) , where $(v) is a holomorphic NxN complex
matrix family. An approximate scattering frequency v will thus be solution of
the non-linear matrix eigenvalue problem : S(v) X = 0 (which is equivalent to
say that O is an eigenvalue of &(v)). This latter problem will be solved by an
iterative method (such as the fixed point or the Newton method).

The perturbation theory for linear operators (KATO [4]) allows us to construct
explicitly the expansion of R(v) = (S(v))-! in the vicinity of a scattering

frequency v : if v 1is close to the positive real axis, this series will
naturally provide the one of the solution of the steady-state problem which
writes : X = R(w?) F(w?) . For example, if v is simple (i.e. if O is a simple
eigenvalue of $(v)), one obtains:

S(v) + (v=-v)G 1)+ O(v-v)?
= F(O) 4 o(v-v)

[ury
-
L
rj
o
<
~—
i

t
<
o
A
—
>
T
<
I

X and Y are respectively the right and left eigenvectors of ${(v) (chosen such

that: ¥ X =1 ). This development of X(w’) expresses the influence of a
complex singularity of the problem upon the response of the system for real
frequencies : it clearly shows that the amplitude of thg response will have a
maximum in the wvicinity of the scattering frequency v . We thus locate the
resonant states of the coupled system.
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