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Introduction

When evaluating the results of model tests in wave tanks it is important to account for the
interference effects resulting from the presence of the tank walls. Spring and Monkmeyer (1975) have
calculated the wave forces on a vertical, circular cylinder extending throughout the depth and cen-
trally placed between channel walls. More recently, Yeung and Sphaier (1989) have given an eigen-
function method for a truncated cylinder that can, in principle, account fully for the images of the
body in the walls. However, in their calculations, evanescent modes are neglected when accounting
for interactions between the body and its images. In the present work, an approximate procedure is
given in which hydrodynamic characteristics of a vertically axisymmetric body when in a narrow tank
are deduced from the characteristics in open water by a relatively simple calculation.

The method is based upon the plane-wave approximation proposed by Simon (1982) who was
interested in the performance of arrays of axisymmetric wave-energy devices. The basic idea is to
replace the waves scattered or radiated by one body with an approximating plane wave in the vicinity
of another body. This is essentially a wide-spacing approximation and is easily visualised by consid-
ering the case of outwardly propagating circular waves. At sufficiently large distances the curvature
of the wave crests is negligible on the scale of the wavelength and the waves may be considered as
locally plane. The method was developed further by Mclver and Evans (1984) and Mclver (1984)
who included a non-plane "correction” term.

A body placed in a channel is equivalent to an infinite row of bodies and the scattering and radi-
ation problems may be analysed by a simple adaptation of the plane-wave method. Preliminary work
on the application of the plane-wave method in this context was carried out by Simon (1981).

Formulation

The usual assumptions of the linearised theory of water waves are made. For simplicity of
presentation, the scattering of waves by a fixed body centrally placed in a channel of uniform depth A
and constant width b is considered. The extension to the radiation problem is trivial and an off-centre
body may be treated by an obvious, but algebraically more complex, development of the same ideas.
Cartesian coordinates (x, y, z) are chosen with origin O at the body axis and in the mean free surface,
Ox is directed parallel to the channel walls and Oz vertically upwards. It is assumed that the motion
is time harmonic with radian frequency ®. As the depth of the channel is constant, the complete
motion will consist of evanescent modes, that decay exponentially away from the body, and propagat-
ing modes. Therefore, in the region "not too close” to the body evanescent modes may be neglected
and the velocity potential written as :

®(x,y,z,t)=Re {0(x,y)coshk(z +h)e™ '} 1

where k is the positive real root of @* = gk tanh k4 and the complex valued function ¢(x, y) satisfies
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the Helmholtz equation.
A plane wave
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¢l =eikx - Z injn(kr)eine' (2)

n =—oo

where x =r cos @ and y =r sin 6, is incident upon the body. When the body is in open water the
scattered wave field is given by

Os =n§“,4,,i"1~1,, (kr)e™®, 3)

say, where the A, are assumed known. With the body placed in the channel each image in the walls
will scatter the incident wave in this way giving further non-plane waves incident on the original
body and a subsequent modification to the scattered wave field. For a centrally placed body, the total
wave field scattered by each image is identical and is written as

o =n§f B,i"H,(kr,,) e )

where (r,,, 8,,) are polar coordinates with origin at (x, y ) = (0, mb ), the axis of image m.

In order to relate the unknown coefficients B, to the known A, the plane-wave approximation is
used to estimate the additional incident waves due to the image bodies. This requires the assumption
that the body is widely separated from its images, that is k(b —2a ) >> 1, where a is a typical body
radius. To a first approximation, in the vicinity of the body the waves scattered by the images in
y > 0 may be represented by a plane wave incident from large positive y. The images in y < 0 con-
tribute a plane wave of the same amplitude but propagating in the opposite direction. An approxima-
tion to the total wave field incident upon the body is therefore

¢lv___eik:r +Ce—iky +Ceil(y =eik‘r cose+C(eikr cos(6~'/m)+eikr cos(e+‘/zit)) (5)

and the body may be thought of as being in open water but with additional incident plane waves due
to the images. Equation (3) describes the scattering of a plane wave incident from 6 =0 when the
body is in open water, combining the three plane waves in equation (5) gives the total scattered wave
field

Os'= T Ai"H, () e {1+ C (i) +im), ©
N =w—o0
where evanescent modes have been neglected. Comparison of equation (4), with m =0, and equation
(6) gives

B, =A,{1+C((=i)" +i")}. ' )

It remains to determine C, the amplitude of the plane wave representing the waves scattered
from the images in y > 0 (ory < 0). By an addition theorem for Bessel functions,




i"H, (kr, )e'"®~ = X iPJ,(kr) H,, (mkb) ePO§ (~i)e ™, (8)

using the large argument expansion of the Hankel function, where

= 2 % imkb—vim)
Sm {nmkb] ¢ ‘ ®)

Thus, from equation (4), the total approximating plane wave due to the images in y > 0 is

50a=% T BuSaciye™ a0
m= m=} n=—o0
so that the amplitude

C= Z_:ISM _2 B, (-i)". (11

Combining equations (7) and (11) gives

C= Zn w2 A, (=) - ZlSm A+ 12)

m= n=—co ms= n =—oco
The series in m in equation (12) is discussed by Yeung and Sphaier (1989) and may evaluated by
expressing it as an integral.

Discussion

Substitution of equation (12) into equation (5) gives the total wave field incident on the body. If
the wave forces due to an incident plane wave when the body is open water are known, then the forces
for the body in a channel are found by combining results in a way that accounts for the amplitudes
and directions of the plane waves given in equation (5). The additional contribution to the horizontal
forces due to the presence of the channel walls will be zero (by symmetry) according to this approxi-
mation. Thus the vertical force on a body is more influenced by the channel walls than the horizontal
forces, as noted by Yeung and Sphaier (1989). If the non-plane correction term introduced by Mclver
and Evans (1984) is included, by taking the next term in the expansion of the Hankel function in
equation (8), then this does give a contribution to the horizontal force. Details of this are omitted here
due to lack of space.

Spring and Monkmeyer (1975) have calculated accurately the horizontal force on a vertical
cylinder extending throughout the depth. Comparison between those results and the plane wave
method is given in figure 1; X is the ratio of the force on a cylinder in a channel to that when in open
water. Comparison is made for three different values of b/A, the ratio of channel width to
wavelength. Strictly the plane-wave theory is valid only when b/A is large, however good results are
obtained even when this parameter is O (1). The values of 2a/b on the figure correspond to ka =1
for each of the values of b/A. The approximation is less good when the cylinder diameter approaches
the channel width, the limiting case corresponds to 2a/b =1.

Reflection and transmission coefficients may be calculated from the diffracted wave field. In
figure 2, the present work is compared with results for the reflection coefficient R taken from




Dalrymple et al (1988) and calculated using an accurate method. The results given here use only
plane waves to account for interactions between the body and its images; improved results should be
obtained when the correction term is introduced.
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DISCUSSION

Yeung: I feel that the difficulty of using the plane-wave approximation is that one can
never be absolutely confident of its effectiveness, unless an ‘exact solution’ is available as a
check. My statement must not be construed as implying that the plane-wave approximation
is not useful, but rather that simplicity can lead to inaccuracy, and proper caution must
be exercised in its advocation.

Meclver: This seems to be a general ‘philosophical’ point applicable to almost any method,
not just to that under discussion here. Approximations are nearly always involved, but
as long as one is fully aware of their nature then a reasoned judgement may be made
concerning the applicability of a given method.




