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1. INTRODUCTION

There is increasing interest recently to analyse the potential flow of a
two dimensional cylinder advancing in regular waves at constant forward
speed. Grue & palm (1985) obtained the solution for a submerged circular
cylinder. A more general case of an elliptical cylinder was solved by Mo &
Palm (1987) using a method of high order source distribution. The solution
of an arbitrary non-lifting submerged cylinder was obtained by Wu & Eatock

Tylor (1987) using the coupled finite element method.

In this work, we will wuse the coupled finite element method to analyse
the problem of a cylinder advancing in regular waves of finite water
depth. When there is no incoming wave, the water depth has marked effects
on the wave resistance. In particular there is critical point at Froude
number equal to one. When there is an incoming wave, the situation
becomes more complex. The above critical point and its effects on the
steady potential still exist. In addition to that, there 1is another
critical point associated with the interaction bewteen steady and unsteady
potential. In infinite water depth, this critical point is at 7=wU/g=0.25
(U forward speed, w encounter frequency and g gravitational acceleration).
In finite water depth, the determination of this point is not
straightforward. Its effect is more complicated. We shall discuss this

problem by first considering the potential due to a single source.
2. GREEN FUNCTION

The Green function is defined as the potential of a unit source
undergoing the same motion as the cylinder. It is essential to the coupled
finite element method. Brief discussion has been given by Becker (1956) .

It can be written as




G(x,z,§,6)=In(r/d) + 1In(r,/d) + H(x,z,£,¢) (1)
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2 2
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2 2
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and d is the water depth. We use the Fourier transform of lnr and write H

in the following form

H = j ( coshm(z+d) [ Am) e ™ &) 4 gmy ™) 4 cm) ) dm (4)
0

By imposing the boundary conditions on G, we obtain

2 2 -md
A(m) = - [mu+{(rm) +2r?v+v ] e coshm(¢{+d) (5a)
mv [mtanh(md) - (rm) /v-2rm-v] coshm(¢+d)
2 2 -md
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c(m) = -2¢" ™/ (5¢)

2
where v=w /g.

It can be seen that A(m) and B(m) are singular when mutanh(md)=(1m+v)2
and mutanh(md)=(rm-u)2 respectively. The second equation always has two
solutions k, and k, with kz>k,; but care is needed in the first equation.
We write it as
o = Umtw = /[mgtanh(md)] (6a)
where o is in fact the frequency in the coordinate system fixed in space.
It is apparent that for a sufficiently large U there is no solution. When
U decreases there will be one solution at which the derivatives of both

sides of equation (6a) is identical, or

o 2md
U= Cg= Zm [+ sinh(2md) (6b)

where Gg=da/dm is the group velocity in the fixed system. When U further

decreases there will be two solutions k; and k, with k,>k,.

Invoking the radiation condition, we can write the Green function as
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G = ln(r/d) + ln(r,/d)
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When there is no solution from equation (6a) the terms of kl and k2

should be deleted from equation (7). The critical point is defined as
that at which both equations (6a) and (6b) are satisfied or forward
speed equal to the group velocity. Unlike in the infinite water depth
where the critical point only depends on 7, it not only depends on U and

w separately here but also the water depth d.

Even though it is not possible to give an explicit equation for the

critical point, there are some sufficient conditions for supercritical

flow. We may write equation (6a) as




/<gd> * m/?)gd) = J/[tanh(md)/(nd)] ®

It is apparent when Fn=U//(gd)>1 there is no solution in this equation,
Thus we conclude the steady supercritical flow must be accompanied by the

unsteady supercritical flow.

We may also write equation (6a) as
2
[U/(m/g)+w//(gm)] = tanh(md) (9)

We notice that the left hand side of this equation has a minimum equal to
4r at m=w/U. It is apparent that the minimum at least must not be larger
than one (or 47<1) if the equation has a solution. Thus we conclude that
if the flow 1is supercritical in the infinite water depth it is also

supercritical in finite water depth.

Look equation (6a) more closely. If m, (i=1,...,4) are wave numbers
corresponding to water depth d1 and ki (i=1,...,4) to d2 with d1>d2, we
have
m,>k,>k,>m, , my >k >k, S>m, (10)

Thus if m; and m, do not exist, k, and k, do not exist either. This

generalizes the conclusion from equation (9).

Various mathematical identities will be presented in the workshop.
Results will also be provided to show the effect of the water dpeth on the

hydrodynamic coeffcients and exciting forces on various cylinders.
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DISCUSSION

Palm: For small U, you obtain two critical values of 7 = wU/g. That means that two
waves of different wavenumbers are propagating upstream with the same group velocity,
U. Could you show this by considering the group velocity (for U = 0) as a function of the
wavenumber k7

Wau: I should have explained clearly in my abstract that, at low forward speed, there are
k; and k, waves as well as k3 and k4 waves, but the first pair are not critical points.




