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Introduction

The steady and unsteady flow around a Surface Effect Ship (SES) is analyzed. The
motivation is to predict the motions of a SES with forward speed in sinusoidal waves. A
SES is a twin hull with an air cushion confined by the sidewalls and bow and stern
seals. When the SES moves in waves, the relative motions between the vessel and the
waves cause an oscillating pressure inside the cushion which again exerts a dynamic
force on the vessel. Hence, the cushion pressure is coupled to the rigid body motions
and must be treated as an additional unknown dynamic variable. The coupling is pro-
vided by contributions from the air-cushion pressure in the equations for linear and
angular momentum as well as from a continuity equation for the air inside the cushion.

Mathematical Formulation

The SES is moving in the negative x-direction with a constant velocity U. Viewed from
an inertial frame (x,y,z) following the ship, there is an incident stream of velocity U in
the positive x-direction. The fluid is assumed to be ideal and the fluid motion irrota-
tional.” The cushion pressure p is oscillating around a mean value p,.

The velocity potential is decomposed as
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where ¢ is the steady disturbance potential, ¢,, ¢, and qS/. are the incident wave-,
diffraction- and radiation potentials. 7, , j = 1,8 are the rigid body motions of the SES.
d)p is an additional feature of the SES, it is the potential caused by a travelling oscillat-
ing pressure patch. w, is the frequency of encounter.

Restricting the sidewalls to be slender the longitudinal component of the normal vector
to the ship hull n will be small (except near the bow and stern). Therefore, n can be
written n =(eNX,Ny,Nz) where Nx,Ny,Nz = (0(1) and ¢ is the slenderness parameter.
The slenderness also implies that the variation of flow quantities in the transverse direc-
tion is much greater than in the longitudinal direction. We assume that
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The boundary value problem for ¢s takes the following (linear) form to leading order Iin
the slenderness parameter,
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Qutside the air cushion the free surface condition (4) is homogeneous. This boundary
value problem oy = 0) was considered by Ogilvie (1972). The free surface condition is
the only equation where the variable x appears explicitly. For each station
x = constant, the two-dimensional Laplace equation (3) is solved subject to the condi-
tions (4) and (5) on the free surface and the hull surface respectively. Upstream flow
effects are passed downstream by the first term in the free surface condition. The boun-
dary value problem (3) - (4) is parabolic in nature and hence 'initial’ conditions must be
supplied at x = 0. For high speed one can assume that the potential and the surface
elevation both vansish at x=0.

For a station at x,, let S, S,:1 and S,:2 denote the intersection curve between x =x,,
the hull surface, the free surface outside and inside the cushion respectively.

Applying Green’s third identity to ¢s and a Green function G, the following integral
equation is obtained
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where « is the angle between the two line segments adjacent to the source point (as
seen from the fluid domain). The Green function is chosen to be the logarithmic source
function
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The unsteady potentials ¢, d)l. and ¢>p satisfy the boundary conditions
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where B =0 for b5 — d¢,/0n for 4, and iwen/ for qbl. F =0 for ¢5 and ¢,
\ i
F = —(iw, +U8/0x)py/p for ¢, inside the air cushion.

Following (Faltinsen, 1983) we write the unsteady potentials as
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Assuming U = O(1) and w, = O(e ) the field equation for the unsteady potentials is
to leading order
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where Kk = TJ— The free surface condition becomes
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where II =Pye . The boundary value problems for the unsteady potentials are

quite similar to the boundary value problem for ¢.. Hence the solutions are given by
integral equations analogous to (6). The Green function is now chosen as
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where K, is the modified Bessel function.

Numerical Solution

The integral equation (6) is solved at each station x,, by discretizing S;; and S with 3-
node elements. On three consecutive stations, line elements can be arranged to com-
pose 8-node surface elements, with an extra mid node. The second derivative of ¢ in
the free surface condition is expressed in terms of ¢-values at the corner points of this
surface element.

The interpolation on the 8-node surface element is as follows
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where N, (¢,7) , k=1,2,....,8 are interpolation functions, x,.y, are coordinates of the
eight nodes on the element and ¢, are the corresponding potential values. The second
order derivative of ¢ can be expressed in terms of nodal values,
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At each station the one-dimensional integral equation is discretized using curved line
elements (on the hull). Introducing (15) in the discretized equation the potential values




on each station depends on potential values on two upstream stations. Considering all
stations simultaneously the total equation system is banded and is solved efficiently by
Gauss elimination.

Response in waves

The numerical solution of the integral equation for the unsteady potentials gives the
generalized added mass and damping matrices The equation needed to close the prob-
lem is the continuity equation for the air inside the cushion. The changes of the air pro-
perties are assumed to be adiabatic. The forcing term in the continuity equation is pro-
vided by the change in air volume due to the relative motion between the vessel and the
waves. The numerical results for the response are compared with results obtained by
approximating the air cushion by a rectangular pressure patch with constant pressure
and using three-dimensional theory neglecting the effects of the sidewalls.
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DISCUSSION

Raven: Your formulation of the steady-potential problem is based on slender-body theory.
But, due to your equation (4), ¢, includes the steady cushion potential. Slenderness is a
valid assumption for the side hulls but it certainly is not valid for the cushion. Wouldn’t
it be much better to use a full 3-D method at just a small additional cost?

Nestegard & Vada: We agree that the slenderness assumption for the pressure potential
is quite dubious. We have another code which includes the 3-D velocity potential due to
an oscillating rectangular pressure. Comparison of the two codes should test the validity
of the approximation. If it is reasonably good, the presented method has the advantage
that a non-rectangular varying pressure can be implemented: it is known from experiments
that the pressure inside the cushion is not constant.

We also agree that a full 3-D method would be better (but not necessarily much
better), but think that the additional cost will not be small.

Yeung: The formulation based on the slender-ship approximation was discussed previously
by Yeung & Kim {1],[2]. Pitch and heave characteristics were obtained for a monohull at
moderate speed. In [2], the possibility and existence of a homogeneous solution in these
types of approximation was discussed; this solution is associated with the presence of
transverse waves.

Nestegard & Vada: Yeung & Kim used a Green’s function that satisfies the free-surface
condition. We have chosen a much simpler Green’s function and integrate over the free
surface. They presented results for rather low Froude numbers, whereas we are interested
in higher Froude numbers.
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