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ABSTRACT

Trapped modes over submerged long horizontal cylinders are well
known. Thus Ursell [1} demonstrated the existence of trapped modes over
a submerged horizontal circular cylinder of sufficiently small radius
whilst Jones [2] produced general results for arbitrarily-shaped
submerged horizontal cylinders symmetric about a vertical plane through
their axis. Further results were described at the last workshop %y
Callan [3] and Bonnet & Joly [4].

In this work it is proved that trapped modes exist in the vicinity
of a vertical circular cylinder in a wave tank at frequencies below the
cut-off frequency for the tank, for cylinders of sufficiently small
radius. The method is an extension of that used by Ursell [1] for
submerged horizontal cylinders in which an expansion in terms of
multipole potentials is used to express the condition for trapped modes
in terms of the vanishing of the determinant of a certain infinite
system of equations.

Numerical computations for any size cylinder suggest that there is
just one trapped mode frequency with a corresponding motion which is
antisymmetric with respect to the centre-line of the channel and
symmetric with respect to a vertical plane through the centre of the
cylinder perpendicular to the channel walls.

Results will also be presented for the trapped mode frequencies
above an  infinite 1line of identical submerged sea-mounts.
Longuet-Higgins [éﬁ showed that it was possible to comstruct 'leaky'
modes above a single submerged circular sea-mount. Here we show that if
there are an infinite line of such mounts, a genuine trapped mode
exists, on linear theory, which does not radiate energy to infinity.

Formulation and solution
We seek a function ¢(x,y) satisfying

(V2+k?)¢(x,y) =0 in r>a, |y] <d, r = (x2+y?)? (1)
by =0, |yl=4d, -0o<x<w (2)
dr =0, r=a (3)
y =0, y=0, |x|] 2a (4)
o6 — 0, |x| = |yl <d (5)

Thus ¢ can be regarded as a time-independent acoustic potential, the
actual potential being derived from Re ¢ exp(iwt) where k = w/c and c is
the velocity of sound. Equivalently as in Evans and Linton [6] the
equations describe a water-wave problem in which a vertical cylinder
extends throughout the depth H thereby permitting a depth dependence
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cosh k(z+H) to be separated out from the governing Laplace's equation.
In this case k is the positive real root of
w?® = gk tanh kH (6)

Note from (4) that we seek solutions which are antisymmetric with
respect to the central line of the channel.

We construct multipole potentials satisfying conditions (1), (2),
(4) and (5) which are singular at the origin, in the form

Yan+1(r,0) = Yan.s (kr)sin(2n+1)6

- n (fo+inm 3d
+ Te i—%l~ J Eé%ﬁ?ﬁ sinhyycos(kxcoshv)e~(2"**)vdv (7)
®

where x = rcosf, y = rsiﬂb, 7 = ksinhv and the contour is taken along
the negative real axis, up the imaginary axis to ir and then along the
line ir + s, s > 0. It can be shown that for r > 0

Y2nes (r,0) = Yan,s(kr)sin(2n+1)8 + mgo AnnJzmeq (kr)sin(2m+1)48 (8)

where

M+ 2
_ o 4-1)m™e e~*9ginh(2n+1)vsinh(2m+1)v
Amn = T , coshyd dv

nf2
-4 tan(fd) cos (2n+1)ucos (2m+1)u du (9)

o
where B = kcosu.
We seek a trapped mode solution in the form

é(x,8) =n§o k" tan (Yones (ka)) " Panss (T, 6) (10)

Application of the condition (3), multiplication by sin(2m+1)# and
integration over the cylinder results in the homogeneous infinite system
of equations

an + 5 Banga = 0, B = 0,1,2,... (11)
A Jému(ka) 19
where Ban = Amn () (12)
A sufficient condition for the determinant Ay of the truncated system
N
am + 20 Bunan = 0, m = 0,1,...N (13)
to converge uniformly to A, the infinite determinant of the system (11),
is
@ o
2 Z |anl < o0
m=0 n=0
and it can be shown that this is satisfied for

0 < ka < kd < %, and coth y < M(ka)~? where (14)
kd cosh y = %7, and M is independent of ka, kd.
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We can also conclude that the infinite system behaves in all
respects like a finite system and in particular has a non-trivial
solution with Y|am| < o if and only if

Ao = det(émn + Bmn(ka,kd))
vanishes for some ka, kd, such that (14) is satisfied.
If we write (ka)? = 4Atanhy, A fixed, and let ka — 0 so that

kd — % or y — 0, we find

B . (2m+1)/\(ka)2m+2n
ma (2n+1) (2n+1)!
so that all elements of Bnn — 0 except Boo. We find that

Acx(ka,A) = det(6mn + Bmn(ka,d)) — 1 - A

so that Ao vanishes if (ka)? ~ 4tanhy as ka — 0, kd — %. It is easy

to show that the correspondirg potential exists and is non-zero so that
we have constructed a trapped mode provided the cylinder is sufficiently
small.

The details are given in Callan et al. [7] and the authors are
grateful to Fritz Ursell for considerable assistance in some of the
finer points of the analysis.

Computation of the real solutions of the infinite determinant when
the cylinder is small is straightforward using a conventional library
routine. The results are shown in Fig.1.

The theory is easily modified to illustrate numerically the
existence of genuine trapped modes around an infinite line of submerged
sea-mounts or correspondingly, a sea-mount in a channel. This provides
an extension of the work of Longuet-Higgins [5] who used shallow-water
theory to comstruct 'leaky' trapped modes near a submerged sea-mount in
an infinite ocean. Here the presence of the channel walls ensure that
the modes are genuinely trapped and no energy, however small, leaks away
to infinity.

On shallow water theory the expansions in the region r > a are the
same as before, but now we have an inner region r < a in which we have a
potential ¢1Asatisfying

(V2 + ki) =0, r<a
where k? = w?/gh, and h is the depth of water above the sea-mount. The
appropriate solution is

b = B budanes (kur)sin(2n+1)8

and the matching conditions on r = a are ¢, = ¢ and hg,. = Hg:,
resulting in a slightly more complicated infinite system of equations.
Results for the trapped mode wave numbers are given in Fig.2.
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There is no technical reason why the shallow water theory need be
used and work is already in hand which predicts trapped modes for both a
submerged sea-mount and a partly immersed truncated cylinder, using full
linear theory.
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Newman: Is there a logical connection between a transverse periodic array of compact bodies,
such as the vertical cylinder, and a transverse infinitely long cylinder? If so it might explain the
presence of trapped modes in the former case.

Evans: It is perhaps not surprising that a periodic array of submerged sea-mounts should exhibit
trapped modes by comparison with the Ursell long horizontal submerged cylinder, but since the
method of construction is so different in each case that it is not clear what the connection is. What
is more surprising is the predicted existence of trapped modes for a periodic array of truncated
surface-piercing cylinders, since the comparison in this case would be to a long partly immersed
cylinder for which no trapped modes exist. However, the analogy is not strong and the variable
free surface geometry in the former case is clearly important for trapped modes.

Mei: Does the existence of trapped modes around vertical cylinders in a channel imply that
irregular frequencies exist in the numerical solution (using integral equations) of diffraction by the
same cylinder?

Evans: I believe that irregular frequencies are the frequencies corresponding to eigenfunctions of
the interior problem with a Dirichelet boundary condition, and therefore have no physical reality
in the exterior problem. They are products of the method used to solve the problem. The trapped
modes discussed here are genuine solutions to the homogeneous exterior problem. No doubt an
integral equation formulation would break down at both the trapped mode frequencies and the
irregular frequencies but only the former have physical significance.

Tulin: We operate a wavemaker with a large 3D pump on it. Will trapped modes result?

Evans: Only if the wavemaker is symmetric about the centerline of the channel and makes anti-
symmetric motions about that line at frequencies below the cutoff can one be confident that trapped
mode frequencies may result. A lot of work needs to be done to determine precisely when to expect
them.

Yeung: We have done calculations, using a matching method, for a truncated cylinder in a finite-
width tank. We had no difficulties with the heave and diffraction problems. Nor, as I recall, did
we have any problems computing the sway added mass and damping coefficients at frequencies
below the cut off. We used a very fine frequency discretization and would probably have detected
the trapped modes had they occurred. Should trapped modes be present, it would appear that
they would contribute a singular behavior to the added mass, but not to the damping, since the
trapped mode energy cannot be radiated down the tank. In any event, there is a possibility that
the geometrical combinations were such that the trapped-mode frequency could be very close to the
cut-off frequency, and hence “shadowed” by the cut-off effects. Also, to my recollection, more wild
behavior than that which could be associated with trapped modes, occurs at higher frequencies,
near the higher-mode ‘cut-offs.” Your analysis does not appear to predict trapped modes above
the first cut-off, or does it? OQur work was published in J. Eng. Math., 1989, and PRADS, 1989
Symposium at Varna, for two types of problems.

Evans: No, our theory only predicts trapped modes below the first cut-off and as you say, this could
well be masked by the cut-off frequency for the geometry under consideration. We are currently
determining trapped mode frequencies for both truncated surface cylinders and submerged. sea-
mounts using the full linear theory. Preliminary investigations suggest that for typical geometries
the frequencies are close to the first cut-off and could well be overlooked. Our latest ideas lead us
to believe that there may well exist trapped mode frequencies in situations in which there is no
natural cut-off frequency, that is they would be imbedded in the continuous spectrum. For example,
using methods similar to that described by Linton in his paper at this workshop, we think that we
can show the existence of trapped modes near a thin vertical plate positioned off the center:line,
parallel to the channel walls, and extending throughout the depth. We hope to report on this at

the next workshop. s
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