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INTRODUCTION

Complex nonlinear and chaotic responses have been recently observed in various compliant
ocean systems'>. These systems are characterized by a nonlinear restoring force and a
coupled wave induced exciting force. The restoring force includes material and geometric
nonlinearities whereas the exciting force consists of a quadratic wave-structure drag
component and a wave induced inertial force. Excitation of semi-submersibles and similar
multi-component structures, is characterized by wave kinematics that cannot be evaluated
at the structures center of gravity. Consequently, the exciting force is further complicated
by an additional parametric excitation coupling both displacement and velocity of the
structure. While weakly nonlinear systems have been studied extensively from both classical
and modern approaches*’, complex single equilibrium point systems are limited in their
scope of analysis. Examples of such systems are the hardening Duffing equation® and the
motions of a wind loaded structure’. This paper describes the theoretical nonlinear analysis
of a compliant ocean system and reveals the complex dynamics recently uncovered
numerically.

SYSTEM MODEL AND GLOBAL ATTRACTION

In past analysis, complex mooring system restoring force was investigated with an
equivalently linearized drag force! or by analysis of a wave excited linear system?. Another
example is the analysis of a quintic polynomial derived for the restoring moment of a rolling
ship where the quadratic damping moment was approximated by a mixed linear-cubic
model®. In order to investigate the nonlinear coupling effect of the wave-structure
interaction, the exact quadratic drag component (Fp) is retained and a symmetric multi-
point mooring system with a integrable (Hamiltonian) restoring force (R) is chosen (Fig.1).
The exciting force is derived from linear wave kinematics for deep water (kh>n/10) slender
body motion in the vertical plane where convective acceleration terms contribute additional
nonlinear parametric terms (F;). Normalization of the equations of motion (x=kX, 6= wt)
results with the following autonomous first order system (surge).

X =
¥y = -R(x) -yy +F5(xy,0) +F(x,,0) 1)
=0

where R(x)=Za x", n=1,3,.,N ; Fp(x,y,8) =8 (u-y) |u-y| /0 ; Fi(xy,0) =u[1-(u-y)/w]u’ and
u(x,8) = wfcos(x-8) ; w'(x,8) = wfsin(x-8). Note that u>1 (buoyancy), f<1 (ka<=/7 limiting
wave steepness), y < § <1 (structural damping and hydrodynamic viscous drag respectively).
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TABILITY ANALYSI D THE POINCARE’ MAP

Global stability of the system reveals that the structurally damped Hamiltonian system has
a strong Lyapunov function resulting in an asymptotically stable hyperbolic fixed point (sink)
at the origin. With the addition of wave excitation, the sink becomes a hyperbolic closed
orbit (limit cycle) which loses the circularity of the sink but is anticipated by the invariant
manifold theorem to retain its stable characteristics’. This result ensures that solution
remain bounded for small excitation (|Fp|,|F;| < <1). The stability analysis of the averaged
system’ results in the bifurcation set of the approximate Poincare’ map of the ocean system.
Consequently, the fixed points and closed orbits of the averaged equations determine the
stability of the periodic solutions of the original system (Fig.2). Application of Melnikov’s
method’ to the perturbed averaged subharmonic system provide a criterion for the existénce
of transverse homoclinic orbits resulting in chaotic dynamics. The criterion is sensitive to
the high frequency of the averaged system [8/e where € is a measure of smallness of the
parameter set: &, (n>1), v, &, f] and only estimates for the separatrix splitting of the rapidly
forced system can be obtained®.

EXISTENCE OF PERIOD DOUBLING

Perturbation of an approximate periodic solution [x(t) =x,(t) + E(t) ; y(t) =yo(t) + n(t)], results
in a complete variational equation. Analysis of the linearized variational equation leads to
a general Hill’s equation which exhibits the existence of a period doubled solution through
a stability loss in the unstable regions of the subharmonic response'’.
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where H, ,[(xo(t), yo(t)]=H1’2(x%(t+mT), yo(t+mT)] and m is the order of subharmonic.
Application of Floquet theory yields two forms [Z(t)=Z(t+mT), Z(t)=Z(t+2mT)] to the
particular solution of the variational equation [£=exp(vt)Z(t)]. The boundary of the
unstable region can then be determined [A(w?) <0 for v >0] resulting with a criterion based
on the intersection of the frequency response and the local stability curves. This criterion
coincides with that obtained for the approximate Poincare’ map for a weakly nonlinear
parameter set (Fig.2).

IFURCATION RO A
Within this boundary, further analysis of the 1/2 subharmonic (m=2) shows the existence
of a period 4T solution. Thus, the Hill’s equation suggests the possible cascade of period
doubling bifurcations. An infinite period doubling sequence with a finite accumulation point
results in chaotic motion. The period doubling route to chaos is continuous and can be
observed with the appearance of even harmonics. The evolution of a subharmonic solution
in parameter space results with contraction of the mT limit cycle. The abrupt change in size
can lead to a chaotic attractor which becomes transient before settling to a regular motion.
This route occurs near the local subharmonic tangent bifurcation. Furthermore, the

-78-




parametric excitation coupling the system velocity causes a competition between coexisting
attractors which results in intermittency. Numerical integration of the system verify the
existence of a period doubled cascade (Fig.3) and the evolution of an attractor via a tangent
bifurcation (Fig.4). The results are portrayed with phase plane diagrams (x,y) and Poincare’
maps (X, Y,) where the mT subharmonic repeats after m intervals and the chaotic attractor
does not, consequently generating a fractal map.

SUMMARY AND CONCLUSIONS

Stability of approximate low-order periodic solutions enables the analysis of the
nonlinearities governing the complex response of a compliant ocean system. Local and
global bifurcations determine the possible existence of complex nonlinear and chaotic
motions which cannot be obtained through evaluation of an equivalently linearized system.
Period doubling and loss of stability of transverse homoclinic and subharmonic response may
in turn lead to global bifurcations and the onset of chaotic motion. Thus, stability analysis
of approximate solutions of this nonlinear ocean system, subjected to combined parametric
and external excitation, reveals the complex dynamics recently uncovered numerically.
Routes to chaos are identified and associated with the nonlinear mechanisms generating the
instabilities.
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Fig.3 Evolution of an attractor via period doubling
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Fig.4 Evolution of an attractor via a tangent bifurcation
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Martin: Does one see chaotic motions experimentally of realistic moored ocean structures?

Gottlieb: A large number of nonlinear phenomena have been observed in various configurations
of moored ships and ocean structures, but to date (to the author’s knowledge) a chaotic ocean
experiment has not yet been recorded. The experimental models have mainly revealed subharmonic
motions (nT/m : n=1, m> 1) [eq. Fujino & Sagara 1990 (m=3,4), Lean 1971 (m=3), Thompson
et al 1984 (m=2)]. While the mathematical models (analytical, numerical) have revealed a variety
of instabilities and sensitivity to initial conditions, the difficulties of generating and recording a
chaotic fluid-structure interaction experiment in a large scale model are greater than controlling
a desktop experiment (eg Chaotic Toys: Moon 1987) where the domains of attraction are easily
defined and measured.
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