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Interaction between ocean waves, a small current and floating bodies in water of finite depth
is an important problem within offshore technology. Among the important quantities to
predict is the wave drift damping force, which often is the dominant damping mechanism
of resonant slow drift motions of floating barges, ships and oil platforms. Earlier 3-D works
have treated this theme by assuming the water depth to be infinite, which is a relevant
assumption in several practical situations. In the North Sea, on the other hand, where the
wave lengths may be up to 300m long and the water depth may be as shallow as 20-50m,
which means a ratio between the wave length and the water depth varying between 15 and
6, the effect of the water depth become important for the wave characteristics. This again
means that the wave drift forces and the wave drift damping forces may differ considerably
from the infinite depth values. As we shall see, a finite water depth is making the effect of
a small forward speed even more pronounced than in deep water. The following analysis is
a direct generalization of Nossen, Grue and Palm (1991), who considered this problem in
deep water.

The boundary value problem

Let us introduce a coordinate system O —zyz with the z- and y-axes in the mean free surface
and the z-axis vertical upwards, and let us consider the problem in the frame of reference
where the body is oscillating about a mean position and embedded in a uniform current
with speed U directed along the negtive z-axis. The fluid is assumed to be homogenous
and incompressible, and the motion irrotational. The velocity field may then be governed
by a velocity potential * which satisfies the Laplace equation. &* is composed by a steady
potential U, representing the stationary flow around the body due to the current and an
oscillatory part R¢(z)e*”t due to incoming and scattered time harmonic waves, as well as
oscillatory motions of the body, i.e.

3*(@,t) = Ux,(z) + Rep(z)e'” (1)

Here t denotes time. The steady potential satisfies the rigid wall condition at the free
surface (since U is assumed small), at the body and on the sea floor.
Let us decompose the potential ¢ into
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where A denotes the incoming wave amplitude, w the orbital frequency of the incoming
waves, ¢, and ¢p the incoming and scattered wave potentials, respectively. The incoming
wave potential forming a wave angle 8 with the positive z-axis reads
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where K is the wave number of the incoming waves related to the orbital frequency by the
dispersion relation

w? = gKtanh Kh (4)
The frequency of encounter ¢ is related to w, K and U by
c=w-UKcosf (5)
The boundary condition for ¢ = @ + ¢p at the free surface reads
—vp+ 2TV, - Vix, +iTdVix. + %’zé =0atz=0 (6)

where V, denotes the horizontal gradient, v = ¢%/g and 7 = Ucg/g. Far away from the
body, x. — —2, and the free surface boundary condition (6) simplifies to

o¢ 0O¢

-‘V¢—-22T-a—;+5;=08.t2=0 (7
On the sea floor the rigid wall condition applies
8¢
r i Oat z = ~h (8)

Far away from the body, the radiation conditions state that the scattered wave potential
behave as outgoing waves.

The Green function

The boundary value problem for ¢ is solved by applying Green’s second identity to the
entire fluid domain. As Green function we apply a pulsating source in a small, uniform
current which is satisfying the free surface condition (7) and the proper radiation conditions.
This function is given by

1 1
G(=,€) = - - —+ ¥(=,§) (9)

r L)
with » = |z — ¢| and r, = |& — (£,n, ¢ — 2k)|. The wave part of the source potential is

given by
¥(w,£) = —1-/2" /m Bk, o) 25 cosh k(¢ + h) cosh k(z + h)

R A 'Y Cosh kh

xCik((m-i)coua+(y-—1})siua)dkda (10)

where
v+ k(1 - 27 cos )

k(tanh kh + 27 cosa) — v
and v = 0/g and 7 = Uo/g. The path of integration is above the pole k = k, given by

B(k,a) =

(11)

ky(tanh kh + 27cosa) —v =0 (12)

For small values of + we may expand B in a power series by

B(k,a) = B°(k,0) + TB*(k,a) + o(r?) (13)

where Ytk
0 - — e 4
Bi(k.) = Tramhkh = (14)
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1 (v + k)

BY(k,a) = 2i%k
(ky o) = 26k cos ol e h =7 + (htanh Fh —3)7) (15)
For small forward speed we thus have
G=G"+7G'+0(r%) (16)

where G° denotes the Green function for 7 = 0 (but keeping v). It is easily seen that
G0
dvdz (17)

The far-field behaviour of G is obtained by applying contour integration and the method
of stationary phase, giving

G'=2;

cosh kl(ﬁ)(z + h) eik,(o)R cos(ao—#)

G(R,8,2€,m,¢) = R™/?h(&,6) cosh ky(8)h

(18)

Let us introduce the orbital frequency w; = (gk, tanh kyh)}¥ and the group velocity of the
scattered waves c)(w;) = %!* and also the group velocity of deep water waves with orbital

frequency wy, i.e. ¢°(w;) % . The amplitude h(£, §) is then given by

7 - 2 kl(ta'nh klh + 1) ki¢ ~ ki (C+2h) Y ~ik (£ cosap+n sin ao)-in/4 2
h(&,0) = 1/ B ch{an) /e (@) (e +e )e +0O(t*) (19)

and k, is the solution of

v = ko tanh koh (20)
ap and k,(0) are, to first order in 7, obtained as
ap=7+0—2r"sind (21)
ky(8) = K(1 + 27" (cos 8 — cos B)) (22)
where
h T

23)
ta'nh Kh + coshz Kh C’;(w)/c;o(w) (
The results for ap and k, are identical to the deep water results except that 7 is replaced
by T*.

Solution of the boundary value problems
By expansion of the velocity potential ¢ in power series of 7, i.e.

¢=¢"+1o" + ... (24)

we may obtain ¢p at the body surface. For the pure diffraction problem we obtain the
following equations which are identical to the infinite depth case except that the Green

function is different, i.e. .
27¢° +/ ¢°§-€-—d5' = 47 Py (25)
S8

8G1
2 +/ ¢’———ds =2 / $O(V,G° - Vix + “G0V1X)d5 // ¢° 545 (26)
SB Sp
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where Sp denotes the wetted surface of the body and Sy the free surface. The equations
for the radiation problems are similar.

The mean horizontal drift force
The z-component of the mean drift force (i.e. in the current direction) is given by

> 1[r08\? % 5% 9%
= —— e — 2 — e nm
F, pfo { 2g[(8t> Ik (azﬂ cos0+/ [ Ve cosd - 3 aRldz}Rd()

(27)
which is valid for arbitrary current speed U and water depth k. Inserting & = !l?e*"Aif(¢o+
¢p) with ¢ given by (3) and ¢p given by

- coshk,(0)(z + h) _; i 1
65 = R-V2H(6) cos;(kl)EO)h ) g-iki(OIR(1+O( )+ O(z) R- oo (28)

The amplitude function H (@) is given as integrals over Sg and S of products of h and

@° + 7¢'. By averaging with respect to time and applying the method of stationary phase,
we obtain

Fz - 1 kO I ch ( )
o dE = "1wig {/ o (c030+ 27" sin® 9)| H (8)|°d8 + 2-—-"’———-)- cosﬁ?R(S)} + o((‘r))
29
where
6° =B + 27" sin 3 (30)

§ = | Zeielt g (6°) (31)
ko

h
A star denotes complex conjungate. We note that cfg{,- approaches unity, 7* — =, and
”-u'i,‘-’ — % as h — co. The ratio between the group velocity in shallow and deep water thus
gives the main effect of the shallow water on the combined wave current interaction on

floating bodies.
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Cao: What is the range of Froude numbers (based on the depth)? Is it possible that the Froude
number becomes close to the critical value 1?7 In that case, solitary waves are generated and the
nonlinearity of the free surface is very important.

Grue: The Froude number based on water depth varies typically from zero to 0(0.1).

Wu: In our work (Wu, & Eatock Taylor, JFM, VOL. 211, pp. 333-353, 1990), we mentioned that
¢' in equation (24) of your paper tends to infinity at large distance. How can you then calculate
the second order force using this far field equation?

Grue: The small 7 asymptotic expansion of the velocity potential does diverge as R — oo. In
our work, we apply this expansion locally at the body, i.e., in a bounded region, where it gives the
leading order contribution to the velocity potential for 7 — 0. When the far field quantities are
computed we apply the exact expansion of the Green function and the velocity potential, with no
restriction on 7. The far field amplitude of the potential then appears as integrals over the body
surface and a limited part of the free surface around the body. This procedure is outlined in detail
in Nossen, Grue & Palm (1991) for the infinite water depth case. The same procedure applies when
the water depth is moderate.

Zhao: In the case of finite water depth, have you checked whether or not the second order potential
contributes to the mean wave drift force damping?

Grue: Provided that there is no circulation in the fluid, there is no contribution from the mean
second order potential to the wave drift force damping. (see Grue & Palm, 1990 “Mean forces on
floating bodies in waves and currents”; Abstracts: 5th International Workshop on Water Waves
and Floating Bodies, Manchester, U.K., ed. P. Martin, 1990)
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