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1.0 Introduction

The impermeability condition imposed on a moving boundary of a fluid domain is usually
expressed in one of the two equivalent forms: one equals to zero the substantial time derivative
of the equation defining the locus of the surface in space, the other equals the component of fluid
velocity along the instantaneous normal to the surface, to the normal speed of the surface, [1].
The two forms can be defined as implicit, since the displacement of the surface in space, which
defines the motion of the surface, does not appear explicitly in the formulae.

The implicit formulations of the impermeability condition lead to difficulties in their
applications. The difficulties are exemplified by the first derivation of the correct linear
impermeability condition for a body advancing with a forward speed and oscillating about its
mean configuration, in 1962, [2]. Difficulties with the application of the implicit form of the
impermeability condition are particularly significant in the development of perturbation schemes
for solutions to non-linear hydrodynamic problems, where the question of consistency must be
considered. Also, in connection with the perturbation solutions, the independence of results
from the choice of reference system is sometimes questioned. In the corresponding hydroelastic
problem for a ship advancing with a forward speed, a heuristic approach was applied, [3], which
unfortunately produced the incorrect result.

Below, a general explicit form of the impermeability condition is presented and used to derive
a general non-linear impermeability condition applicable to the motion of a submerged elastic
body. From the latter condition a linearized impermeability condition for an elastic body
advancing with a constant velocity is obtained. The linearized condition is different from the
condition presented in [3], but is equivalent to the condition derived in [2].

Another general explicit form of the impermeability condition can also be derived and shown
to be equivalent to the one used here, [4]. The derivations of both explicit forms demonstrate
that applications of the impermeability condition imply the existence of a one-to-one time
dependent mapping between a reference configuration and instantaneous configurations of the
impermeable boundary. It is shown below that the usual perturbation schemes used in solutions
to non-linear boundary value problems formulated for floating bodies, do not allow a
construction of such a mapping.

2.0 An Explicit Form of the Impermeability Condition

An explicit impermeability condition can be written, [4], as:
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where U is the field of fluid veloc1ty, n_ is the field of the wetted surface displacement from
its reference configuration. N is the normal vector to the wetted surface,and X denotes  the
radius vector, with both vectors taken in the reference configuration of the surface, S,. 3
signifies the unit tensor. The condition is applied on the instantaneous wetted surface.

The condition can be applied on S, , if the fluid velocity field > s developed in the Taylor’s
series:
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In addition, for the use in a perturbation scheme, the inverse tensor in (1) may be represented

by the Neumann’s series:
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Another explicit form of the impermeability condition, which is equivalent to (1) but does not
involve an inverse tensor, can also be derived, [4].

3.0 Impermeability Conditions for A Moving Elastic Body and The Kinematic Free Surface
Condition

For an elastic body in motion, a body displacement from a reference configuration is given by:
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where & is the parallel translation field, and R is the tensor of rotation. X (0) and Q denote
respectively the radius vector of the centre of rotation and the field of elastic displacement, both
taken in the reference configuration. A simple manipulation gives:
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and therefore, a general non-linear form of the impermeability condition for a submerged elastic
body is obtained:
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Formula (2) can be applied to express the condition on

For an elastic body, advancing with a velocity W | condition (5) is linearized by taking:
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where Q is the displacement relative to a reference configuration moving with the velocuyu
and § is the vector of angular displacement. Only the first two terms of the Neumann series
(3) need to be considered and (5) is reduced to:
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In addition, the following definition is introduced:
F: '+ O:w Lr\h« (J"u-u.)'N‘-'O Lo S,

With the use of (2), and after simple manipulations, the linearized impermeability condition is
obtained:
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which is different from the condition given in [3](eq. 40).It is possible to rewrite condition ©6)
as:
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and this form is equivalent to the result presented in [2] (eq. 3).

Condition (1) can also be applied if displacement field | is defined only on S, Let ., ,uw 2/
W, denote curvilinear coordinates, with the «, and W, lines on Sa , and u,sline directed
along N . One has:
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Considering elevation ] of the free surface X, = 0,
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it is found from (1) and (3), that:
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which is the well known form of the free surface kinematic condition.
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4.0 The Application of The Impermeability Condition in Perturbation Formulations of
Boundary Value Problems for Floating Bodies

The derivation of the explicit impermeability condition (1), and of its counterpart which is not
presented here, show that applications of the impermeability condition require an explicit or
implicit assumption that a one-to-one time dependent mapping exists between a reference
configuration and instantaneous configurations of the impermeable boundary. In generally used
perturbation formulations of non-linear boundary value problems of hydrodynamics of floating
bodies, the wetted surface of a body is mapped according to its rigid body displacements,
whereas the free surface of water is mapped using the single valued wave elevation mapping.
This approach is illustrated in Fig 1. It is seen how each of the points a and b in an
instantaneous configuration of the boundary is mapped by those mappings to two different points
a’and a”, and b’ and b”, respectively, of which points a’ and b” do not belong to the reference
boundary S,,. It is clear that the two mappings used in conjunction do not provide a one-to-one
mapping between S _and S . Therefore it is shown that in the perturbation formulations based
on those mappings the impermeability condition may not be applied correctly.
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Most Frequent Formulations:

o € a' - rigid body mapping on the body wetted surface
b &2 b’
o<y o - single valued elevation mapping on the free surface
b (__7 b”
<
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Wehausen: Is it essential to designate part of the displacement as elastic?

Pawlowski: The displacement @ in (5) and (6) may represent an arbitrary deformation of the
body. However in this presentation { was considered as an elastic deformation in view of the most
probable applications of the discussed conditions.

Martin: In your abstract, you state that reference [3] contains an error. Can you be more explicit?
Perhaps you could write down their incorrect condition and your correct condition, and comment
on how they went wrong?!

Pawlowski: In reference [3] a formula equivalent to equation (6) with Q@ = 0 (i.e., for rigid
body motion) was rederived following reference [2]. _Reasoning by analogy, the rigid body angular
displacement § = @, was augmented to 6 = 8, + 0,, with 8, representing the addmonal local,
rotation of the body, due to the elastic displacement. The result is equivalent to replacing -2 = a
with 1[ ®Q - ( ® Q)7, in equation (6). In other words, the reasoning by a.na.logy led to the

omission of the stra.m (#.e., symmetric) component of the displacement gradient 3% ® 7.
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