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1 Introduction

The subject of this paper is the use of composite overlapping grids together with finite difference methods to calculate
free surface flows. In particular, the two dimensional steady potential flow around a submerged body moving in a
liquid of finite constant depth at constant speed and distance below the free surface is considered. The motion is
described in Cartesian coordinates which are fixed with respect to the body. The z-axis points opposite to the forward
direction and the z-axis is directed vertically upwards. The total velocity potential is split into a free stream potential
plus a perturbation potential, ® = z 4+ ¢, and the boundary condition at the free surface is linearized around the free
stream flow.

This problem can be solved by several existing techniques, like the boundary integral method described in [2] or the
hybrid finite element method in [3]. The aim of the research described here is to take a first step towards an accurate
method for the nonlinear potential problem, where the boundary integral method is known to depend on the addition
of artificial dissipation at the free surface boundary. Another important reason was the prospect of incorporating
effects by vorticity and viscosity.

2 The in and outflow boundary conditions

To solve the problem numerically, the infinite domain is truncated to ¢ < ¢ < b, where b — a < oco. It is therefore
necessary to impose in and outflow boundary conditions at # = a and = = b respectively. To achieve an accurate
solution, it is of vital importance to minimize the influence of these artificial conditions. The method outlined below,
and described in [4], allows for constructing boundary conditions that do not affect the solution of the present problem
at all.

The solution is assumed to be bounded and satisfy the upstream condition at infinity. The boundary conditions
are derived by making an eigenfunction expansion of the solution in the z-direction ahead of and behind the body,
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The corresponding eigenfunctions in the z-direction are given by
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To get a bounded solution, there must be no linearly growing modes ahead of or behind the body, ie. By = 0.
Moreover, there can only be exponentially decaying modes; A; = 0 ahead of the body and B = 0 behind it for &£ > 2.
The upstream condition implies that A; = B; = 0 ahead of the body. For these reasons, the linear mode must satisfy
dR(®)/dz = 0 at z = a and z = b. Furthermore, the exponentially decaying modes satisfy dR(*)/dz = \/EzR*) at
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z = a and dR®)/de = — /ErR(*) at z = b. Finally, the oscillatory mode must have R = 0 and dR(M)/dz = 0 ax
z = a. These conditions on the Fourier side are transformed to conditions on ¢ by first noting that

(8),80)2 =0, p# g, (8)
where (f,g)2 is the L3 scalar product. The coefficients can then be found by
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This approach is also possible when the problem is discretized by finite differences on a Cartesian grid. Here the
boundary conditions are matrix relations between the value and the normal divided difference of the solution at the
in and outflow boundaries. Let the grid sizes in the z and z-directions be hz; = (b — a)/(N — 1) and h, = d/(M ~ 1)
and let the grid points in the Cartesian grid be z; = a+ (j — 1)h; and zx = —d + (k — 1)k,. The boundary conditions
can be written as

Au1+B~—L(UQ—UQ) =0 (11)
2hs
Cuy + D----—--—1 (uy4r —un-1) =0 (12)

where A and B are (M + 1) x M matrices. C and D are (M — 1) x M matrices and the vector u is given by

w; = (¢(z5,21),8(2j,22), - . ., b(zj, 2m0))" (13)

The matrices 4, B, C and D are derived from the discrete counterpart of the eigenfunction expansion and scalar
product; they are not merely discretized versions of the continuous boundary conditions.

3 The composite grid

To be able to handle bodies of general shape, it is convenient to discretize the domain close to the body with one
or several body fitted curvilinear grids. This makes the discretization of the Neumann boundary condition on the
body accurate and straightforward. The need for both a Cartesian and a curvilinear grid is satisfied by utilizing a
composite grid, Fig. 1. The composite grid method is a general tool for solving PDE’s on complex domains, cf. {1].
The basic idea is to divide the complex domain into simple overlapping subdomains, the union of which completely
covers the region of interest. Each subdomain is covered by a component grid. This set of component grids taken
together is called a composite grid. The component grids overlap each other with no requirement that they exactly
match up at their edges. The main advantage compared to covering the whole domain with one single grid is that
each component grid can be chosen to have a smooth transformation to the unit square; in particular be made without
singularities. To solve a PDE on a composite grid, it is first transformed to the unit square of each component grid.
The transformed PDE is then approximated by finite differences. The component grid problems are coupled to each
other by interpolation at the interior boundaries where the subdomains overlap.

In the present method, a second order accurate finite difference method is used on the component grids. To get
second order accuracy for the total solution it is necessary to use third order accurate interpolation (biquadratic).

The grid generation program CMPGRD, cf. [1], was employed to construct the composite grids. This program
supplies as output all the information needed to form the difference equations and the interpolation relations. Fur-
thermore, CMPGRD is capable of constructing 3-D composite grids, so the present method can be extended to 3-D
problems.

The resulting sparse linear system of equations was solved by LU-decomposition followed by iterative improvement
until the norm of the residual did not decrease further. From a computational point of view, the main difficulty of
extending the present method to 3-D lies in the solution of the sparse linear system. An fast iterative solver based on
domain decomposition is under current development.
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-54 54 =27 2.7 947x10-% 5.31

Table 1: Extension of the solution by the eigenvector expansion.

4 Numerical examples

The following experiment was done to investigate the quality of the boundary conditions at z = a and z = b. Two
solutions ¢, and ¢ were computed around a test body. The computational domains in the z-direction were a; < z < b,
and a3 < = < by respectively, where a; <€ a3 and by € b;. After the solution in a3 < z < b2 had been calculated, it
was extended to a; < < b1 by the discrete counterpart of the eigenvector expansion. To make it easier to compare
the two solutions, a constant was added to each of them such that ¢;(a;,0) = 0. A circular cylinder of radius R was
used as test body and the non-dimensional depth was d = 3R = 7.8125. The distance between the surface and the
center of the cylinder was 2R. The shorter of the grids is shown in Fig. 1. The longer grid was identical to the shorter
grid in a3 < = < by, but the Cartesian component grid was extended to a; < = < a2 and b2 < z < b, by increasing
the number of grid points and keeping the grid size unchanged. The difference, ¢; — ¢2, measured in maximum norm
over a; < z < by is given in Table 1. The conclusion of the experiment is that the difference is negligible. Obviously,
there is a considerable gain in decreasing b — a; the number of equations decreases and the solution close to the body
becomes less sensitive to roundoff errors, since the eigenvalue of smallest magnitude of the discrete operator behaves
like (b — a)~2, cf. [4].

To exemplify the use of the present method, the flow about ellipses and rounded rectangles was studied as function
of the length of the bodies at a fixed Froude number. In particular, the lift and drag coefficients were calculated. In
all computations, the non-dimensional depth was fixed to d = 5 which yielded a Froude number Fy = 1/1/5 ~ 0.447.
The ellipses had the horizontal semiaxis submerged 0.5d below the surface and the length of the vertical semi axis
was 0.1d. The streamlines around the ellipse of nondimensional length 3.0 are presented in Fig. 2. The thickness of
the rounded rectangle was set to 0.2d, the radius of the rounded ends to 0.1d and the upper horizontal boundary was
submerged 0.4d below the surface. The results are given in Fig. 3. The lift and drag coefficient were based on half the
total length of the bodies. The minima in Cp occur for different lengths for the two geometries which implies that
the more slenderly shaped ellipse does not always generate less drag than the rounded rectangle.

5 Conclusions

In this paper, it has been shown that composite grids together with finite difference methods can be used to calculate
the linearized potential flow around a submerged body. To treat the nonlinear case with a wavy surface, the plan is to
add a third component grid close to the surface. The above described inflow boundary condition can be used for the
nonlinear problem if that boundary is located sufficiently far ahead of the body. Behind the body, where the solution
is known to oscillate, it is not possible to use the technique from linear theory to construct the outflow boundary
condition. An alternative approach is under current development.
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Figure 1: The shorter composite grid in the test of the in and outflow boundary conditions.
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Figure 3: The lift and drag coefficients as function of the length of the ellipse and the rounded rectangle.




Tuck: Further to Fig. 2., I believe that it is possible for some of the streamlines above z = 0 to be
non-continuous i.e., to rise to infinity. This is a consequence of linearization, which is inconsistent
with full streamline plotting. (This effect might not occur at the submergence shown since there is
a critical extent to the nonlinearity, see my 1965 JFM paper on submerged circular cylinders.)

Peterssen & Malmliden: For bodies with smaller submergence then the one in Fig. 2, we have
experienced cases where the streamlines turn forward behind the body, close to the surface. We
agree with Prof. Tuck that this indicates that the solution of the linearized problem describes

reality very poorly. However, we think that it is necessary to first define the problem in the region
above z = 0 before discussing the behavior of streamlines in that domain.
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