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Except. several existing numerical solutions of the second order
diffraction and radiation problems which are based on the application
of Green’s identity using the linear wave source potential as Green
function, there exist other alternative methods which do not require
the evaluation of the infinite free surface integrals. An alternative
methodology was developed by Sclavounos(1988). 1In his method, the
“difference- and sum—-frequency Green Function” obtained from the
solutions of initial-value problems that ensure they satisfy the
proper radiation condition at infinite have been introduced. Another
was developed by Wu (1988)>. But the numerical evaluation of the second
wavw order forces is still very difficult with the above methods. Here,
we will give an definition and several alternative expressions of
three dimensional diffraction and radiation function in finite depth
water, an radiation condition of the second order diffraction
potent.ial also derived by examine the behaviours of the second orvder
solution at far field. The present method may be more convenient. for
computation than others.

Let. us consider the interaction of random ambient waves with a [iexd
body in finite depth sea and approximate a random seaway by the linear
surperposition of a sufficiently large number of reqular plane progres
~sive wave components of different. frequencies {mn} and headings {Ah}.
By denot.ing the linear order incident and scattering potential by
Re{wi(p)exp(—iomb)} and Re{@i(p)expc—immt)} respect.ively, one can find

the second order scattering potential ¢§ has following expression:

¢§cp,c>= S Re{¢:gp>exp<—1a+t>+p:gp>exp<—in“t>} Qi=onrmm 1>

m, n=1

where, The sum— and difference— frequency potentials ¢;m(p) and ¢:m(p)

sat.isfy Laplace equation in the fluid domain D and boundary conditions:

+ . me g 4
Ca,-a%r¢T =pEcp>, on x_=0; 4,47 =0, on x_=-H; V¢ 20," as rem (24

nV(¢fm+pfm)=0, on peSB 2B>

here, AT=t co® Z+ipnti g, 9 =3/0% Cy=1,2,3),p=Cx X, ,X,). r= xZ+x2, sea
bot.tom depth H is constant, n is the unit normal vector pointing into
the body and SB the wetted surface of body. Xg axis is the vertical

axis, positive upward, and x3=0 corresponds to the mean free surface.
¢ and ¢ express the second order sum— and difference— incident
nm mm .
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potential, respectively. The forcing term Pmm&p) can be expressed as
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where L =6?—v 6 - vm=m: 'z, p:’+= I=(p1")*, and 4: m=< - )*. The
parameter p is the Ravleigh stress which ensures ps and ¢Tm atisfy a
proper radiation condition at far field(vu, 19883,
Notlcxnw that the linear incident potentlal can be difined by

PIOx0= igA_ [w chk H1 'chk (x_+H)expCik x> <4
where x«(x x2>, k k (cosB blnﬂ 2, the wavemunber kn is the positive
root of the dxsper51on equatlon

FCk,v J=v_-ktanhkH=0 ‘ C44AD

and, in connection with the source distribution method, the solution of
the linear scattering potential pf can be expressed as

¢S Fepr= fcof(q)G(p,q;vf)dS, q=Cq,,q,,q,0<S, u=0" 5>
B
where, vf=(m§tiuon)/g, oy is the source density, aB=(og}*=o;, and the
Green function G is the solution of below boundary value problem:
ViGCp, q;vr=5Cp-q>,  p,qeD €63

C,~vH6=0, on x_=0; 9.6=0, on x,=-H; VG 20, as r = CEAD

one can easily find that ¢t has a special solution which is governed
by Laplace equation and bounddry condltlon(ZA) and can be written as
* - D,, i RN
¢p, (pd= f ds o(q)L (G (p.q; A™, ikm)]+ jédsq fédsq,ogq)om(q p)

g , B B

S,... >, * . > » » ) +
.an [GSCp,q,q s A ,vn,vm)] q =(q1,q2,q3)eaB =0 <7

where, the differential coperetor LD’i and Ls’t are defined by
LR, T=2L 5 r20%r v+ ik ¥ d-o (kZ-v2)Fe (8%,3q2-17>] CTAY
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1

scattering Green function GD and Gs are defined by following boundary

where, vtaca/aqt,a/aq2>, v? (670q a/aq >, and the diffraction and

value problems:

VZGD saor peD; asGD s 0, on X_)z“'ﬂ; GD S:O'_ as rvo;
r 3 »

(aa—Ai)GosG(p?q;vn)exp(xlkmx), (63-Ai)Gs=G(p,q;vn)G(p,q’;vf) on x3=O
: 8>

Assume that the function Go and G decay sufficiently rapidly as r=wx
sa that. their Fourier transforms with respect to (Xz'xz) coordinates
exsit. By using Fourier Lraanormation method, One can obtained that

G Cp, q; AT, v7, 1k >--sz du,du, FCu,x,, AHFCu-k_,q,, v

-0

P\p(tiu(x~x d2+ik x 1 <9
m 1

. - +
GS(P,q,Q’;At,V D= Jffj “du (dudv dv, F(u,x3,Ai)F(v,q3,uh)

neeom (21{)

.FCu~v,q3.um)exp[1u(x~x2)+1v(x2~x1)] C10d
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where v=Cv v ) v=v v +v2 a=Cu_,u ). u=v ui+u?. x =Cq,.q,7, x, =C(q'.q’>
17 1 17 a2 L | S T A z Tty

and F(u,z,o)-rnuaz+ﬁ)/(u(huh~ushuﬂ3.8y changing the Cartesian to polér
coordinate system, alternative forms for (9> and <{13) which may be
more conveunient for gomputdtionb are obtained as

GD<p,q;A , ,tk )= =2 j def F(p Qu,k _.0-3 +0 5, q .1

4r
exptlk u«uqé +ik xljudu CLid
Gop, a4, q"; AT, v, =" f dej duf uvFCu, q}, vFCv, q, 05
s 2> r » 2 n 8n 3’ Q3)
. + 19
FCpTCu,v,0,x,, A ] (p*(R,u,R v,6-0, >dv 12>

where, R (cos®,,sin® d=x-x c,=1.2), pi(u,v,6)=[u2+v212uvcosel1/2,J0(z)
is the zero—order Bessel function, 921=62—61. Noticing that the inner
integral in formula (9> can be treated as a complex integral along the
real axis in the complex plane u, and this path of integration can be
modified by introducing a closed integration contour comprising the
real axis, we obtained ancother alternative form for C which may be
more convenient for computatton t.han both _expressions C9> and (113 as
G (p q,Ai v ,tk )=-— § {C(xs,Ai,l )f y’exptlklkjch(t-aJ)ikax1]

J=1 -0

T ) . «»iy;i
.FCp (kj,km,tmj),qs,vn)dt +C(q3'bn’knj)f;m dt
. N ety + s +
exptlkiknjch(t a))tlkmx]F(p (knj,km,tmj),xs,A 2} <13
s PR — ru 3 " — — —— P— b ot | §
where t j=B -9 +8J+1L t j~Bm 61+sj+1t, LJCazj—eg—yj-7J=0,81—51gn(0 >,
€, 2’ =n,7,; =sxgn(Qi)n {knj} and {XJ} are iyJ m*iyj
the complex root.s of the dispersion
. + + : t-pltane
equatlons:F(l,vn)aﬂ and F(A,A™=0 in == o
the upper half complex plane of A. FLg.1. The integration contour
Specially,kh1=kn and Im(ll)t0+,as u"'o.* in the complex t-plane
The integration contours are shown in figure 1 and
CCz, v, kd=k?[ (w2 =kZ>H-1r1  'chk(z+H)/chkH; C14d
Similar to GD, another alternative form for.Gs is
6.(p,q, 9 ; A%, v, v <153
-1

+ + oo ? s
iz . 1{C(qs,v JK )C(xs,A ,XJ)UJp(Rz,n,qa;Gzo,O;l),knp,vn)
p=1j=

+ > .,i:. - . . - )
+C(x3,A ,lj)C(qs,bm,kmp)UJp(Ri,n,qs,eio,O,AJ,kmp,ph)

+ c R )i + . . i
+C(q3,vn,knp)0(q3,Lm,kmj)UjpCR1,Rz,xs,eio,ezo,knp,kmj,A PR
where, xl—x2=n(coseo,sin60), ej0=6j—60(j=1,2)
+ ki aobiyl o . N 5
U;p(xry)z;a,ﬁ;a,b,c)aj;m dtlj Flp (d,b,ltlj"l 2p ,Z,C.

-0

.exp[iaxch(tlj-ia)+ibych(t£p~iﬁ)]dtz C15a0
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in the above fomula, a,ﬂe(—%,Sg).a'=B’=0, as «, 3=(~ ,g),and a'=3"=—-r,

N

as a,3=(n72.3n72>. Llj=h1_1C53+a'),L2p=bz~1(8p+ﬁ'). y;=f£a)n,y¥=f(b)n,

YjC22>=Fi=O’ and &i=f(a>n,al=f(b)n, 5,£\0.=$'

eV 2] }

=0. flad=signliRe{ar1l.

Using the methad of the stationary phase and noticing that., in the
integrands of the integrals in formula (13> and (154), the stationary
phase points occur at t=aJ b=£;, L1j=ia and h;p=iﬁ respectively, we
find, for large r,

. + o+ + + R ~1/2
GD(p,q;A ,bn,ikm)=C(x3,A ,li)FCp (kl,km,am),qs,bn)(antki)

r: _3 - o+ + . +
expilcxiﬁtikmx1 1 +u(q3,vh,knj)F(p (kh,km,am),xs,A >

CannRL)'l/z exp[i(knﬁltikmx—gn)]+ o¢r~37%; C16d
GSCp,q,q’;Ai,vn,vf)= C(xs,Ai,lx)(anlr)'l/zGD(q’,q";v:,vi,—lie)

: .3 1 + - S -17,2
.exp[.l(}\lr:tkmx1 Iﬂ)]+EEF<p (kn'km'O)'Xa’A )(khkmklkz)

.C(qa,V:,kn)C(q;,v:,km)exp[i(knﬁl—gikmﬁzig)]+ ocr 373 U™

where e=(cos90,coseo),am=ﬁm-a, rCose=x, .
From the above formulas, we can write the radiation condition of the
second order diffraction potential as below

+ _ ~D.E + . . dy 1 -1 .
Lr¢ = Chm FCp (kn,km,am),xa,A )thX)pmo(x>+ Oo(r "> 18>

nrm

F _ D, Epe t £ X
or Lr¢nm o FCo (kn,km,mm),xa,A )wn(x)pmo(x)
+CS Fpcotek Lk L0y, x, ATt cxorToo+ 0crT372y  c184)
nm n m 3 [a) m
where L =3/8r-i} . oI (x> =¢X(p>|x, =0, and yE0:0=4% F(p> |x =0.
P Ealop 4k cosa A 2020 v Tk k cosae d—o (kZ-12)Fa (kZ-0%)1
nm 2 T m m 1 noom m o n ™ N m m m n n

s,t, i o - — 2,2
G EECRHtkm kl) ta (bnbm+knkm) t")H(Lm Lm)] 20>

mm

We can see from formula (162 and (17> that there exist two +typical
behaviours of ¢fm at far field, one is the locked phase presure wave
systems similar to the far field behaviours of the free surface
forcing term Pfﬁ(p), the another is the free scattering wave systems
with frequency mntmm. All the second order diffraction wave systems
are implied in the radiation condition (18> or <(18A), the radiation
condition (18A) may be more suited for numerical evaluat.ion than <18
when the finite elememt method or the boundary element method using
the Rankine source as the Green function is used.
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