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We consider in this paper the viscous flow associated with a slightly-submerged two-dimen-
sional body undergoing forced oscillation. This serves as a follow-up study on the inviscid-flow
analysis presented in an earlier paper at the @ystese workshop {1]. While the earlier work focussed
primarily on the capability of our grid-generation method, the use of reference and computational
spaces, and a finite-difference methodology of the inviscid-fluid formulation, we are now in a position
to present the parallel solution of the same problem for the case of a viscous fluid, thus enabling
one to address the importance of viscous effects in typical motion problem of floating bodies.

The nonlinear viscous-flow problem is formulated using primitive variables, i.e. velocity
u(x,t) and pressure p(x,t). The governing field equations are the incompressible Navier-Stokes
equations. No-slip condition is satisfied on the body contour. The free-surface kinematic condition
is stated in a Lagrangian form. Similar to the case of inviscid fluid, this form can be used to advance
the position of the free surface at each time step. Free-surface flows in a viscous fluid require the
consideration of both tangential and normal stress components at the free surface (see e.g. [2]).
For the primitive-variables formulation, we were able to obtain a Dirichlet-type boundary condition
for the pressure and Neumann-type conditions for the velocity components in the computational
(mapped) space. An approximate condition is however used at the (numerical) open boundary.

The solution of the Navier-Stokes equations in conjunction with the above-mentioned bound-
ary conditions still requires some innovative treatments. A fractional-step procedure similar to the
one reported in [3] is used. In brief, this consists of introducing an auxiliary velocity u(x,t*), which
is an artifice advanced by using the Navier-Stokes equations without the pressure-gradient term:

u(t*) = u(tees) + 6t R(te-1), (1)

where R(tx-1) represents the diffusion and convection terms at time t;—; and é¢ the time-step size.
It is not difficult to establish that the auxiliary field can be decomposed as

u(t*) = u(tx) + 6t VP(t), (2)

where V -u(t;) = 0 and P = p/p+ gy, g being the acceleration of gravity and p the fluid density. If
the divergence of Eqn. (2) is taken, it follows that the pressure field satisfies the following Poisson
equation:

VEP(ty) = glzv u(t") (3)




which needs to be solved subject to the appropriate Dirichlet conditions on the free surface and
the open boundary and a Neumann condition on the body. Once known, the pressure field can be
substituted back in Eqn. (2) to determine the complete velocity field u(¢;). This solution procedure
is one form of the so-called projection method (see [4]), a more detailed description of which for the
present application is reported in [3] and (5]. In our actual implementation, curvilinear coordinates
generated using the variational method of [1] are incorporated in all of the differential operators. In
the numerical discretization, upwind differencing is used for discretizing the convection terms and a
central differencing for the diffusion terms. The Poisson equation is solved using LU decomposition
of the banded matrix.

Representative results are shown in this abstract for illustrative purposes. The heave os-
cillation of a submerged square cylinder of width 25, with an equilibrium submergence clearance
d that is one-eighth of the cylinder width, is considered. The cylinder is oscillated sinusoidally
with a relatively small motion amplitude a, being 5% of the body width. For the case presented,
the nondimensional frequency w+/5/g is 2.09 and the Reynolds number, defined as \/5%¢ v, is 103
Here, v denotes the kinematic viscosity coefficient. In Fig. 1, the time history of the computed
heave force is shown. It can be seen that the response is rather sinusoidal and that steady state
is reached within 2 to 3 oscillations. The time history of the body displacement (a sinwt) is also
plotted to clarify the phase lag of the force curve. From the phasing, it is possible to determine
the intensity of wave and linear viscous damping. Comparison with the inviscid-fluid results reveal
that the viscous damping, primarily coming from boundary-layer shear is not significant, at least
for this configuration and motion amplitude. The time evolution of the free-surface elevation in the
right half of the domain is displayed in Fig. 2. Following the wave characteristics, one notices that
the sharp corners of the body generates two waves, one propagating away from the body and the
other towards the centerline. It is interesting to observe that waves traveling towards the centerline
results in a wave sloshing above the cylinder. Again, the basic features are very similar to the
inviscid-fluid results. Velocity-vector and vorticity-contour plots at two instants of time that are
one half period apart are shown in Fig. 3. Generation of small vortices at the sharp edges can
be observed in the plots. These vortices do not appear to affect the global force magnitude in a
substantial way. Preliminary results for other modes of motion and motion amplitudes, however,
portray rather different behavior, i.e. in terms of the effects of viscosity. These will be reported in
more detail in a future report.
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Fig.1 Time history of heave force (solid line) and body displacement (dashed line) for a/b = 0.1,
d/b=0.25, wy/bfg = 2.09, Re = \/b3g/v = 105. :

f&"‘\?.\“‘ff ————
. .%.‘ng“\\/ Z e —
- \Xﬁ e s \/‘/ S

//}.\ (
T
R

, XS
X

Fig.2 Time evolution of free-surface elevation, in the right half domain, for a/b = 0.1, d/b = 0.25,

wy/b/g = 2.09, Re = \/b3g/v = 103
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Fig.3 Velocity-vector and vorticity-contour plots at time t = 2.247* and 2.74T*, where T* is the
period of body oscillation: a/b = 0.1, d/b=0.25, w\/b/g = 2.09, Re = Vb3g/v = 103. Solid lines

in the vorticity-contour plots denote clockwise vorticity and the dotted lines the counter-clockwise
vorticity.




Discussions

K. Mori: I can understand your method for the grid generation is quite general. But it may
be so much time consuming in case of free-surface flow computations where the transformation is
necessary at every time step.

As I understand your grid size seems very uniform for all the domain. The grid size must
be much smaller for the flow in the boundary layer. It must be the function of the wave length
at the same time; the wave does not propagate well when the grid size is not enough small to the
wave length. It must be important especially for unsteady flow problems. A study on the grid
dependency should be carried out as one of the future tasks.

P. Ananthakrishnan & R. W. Yeung: The grid equations are solved iteratively using mixed
over-under relaxation technique. With the known grid values from previous time step taken as
the initial guess, the number of iterations required for convergence is reduced significantly; for the
results reported here, the number of iterations required at each time step is < 10. If the problem
is unsteady and the domain is changing, the grid naturally has to change to conform with the
free-surface and the body movement. This is to be expected.

The flow plots given in Fig. 3 corresponds only to the near field. Using the reference-space
based grid-generation procedure, we were able to discretize the fluid domain efficiently with fine
grid spacings in the near field, where the flow gradient is large, compared to that in the far field.
Using the present solution method, we were able to solve accurately other free-surface low problems
in which the generation of free-surface shear layer plays a crucial role in the flow evolution; see,
for example, [3] or Proc. 19** Symp. on Naval Hydrodynamics, Seoul, Korea, 1992. We have also
analyzed the convergence properties of our numerical method with respect to mesh and time-step
sizes; these results are also reported in the above two works.




