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Introduction

This work forms part of an investigation into the behaviour of floating bodies
having a low forward speed in waves. We have shown in [1] that in order to satisfy
exactly the Timman-Newman reverse flow relationships, it is necessary to pose the
problem using a form of the free surface boundary condition which includes the coupling
between the steady and unsteady potentials. The extra coupling terms are relevant when
the body is not slender or deeply submerged. When this formulation is employed as the
basis of a numerical analysis for arbitrary bodies, as for example by Nossen, Grue and
Palm [2], the reverse flow relations may be used as one of the checks on the reliability
of the numerical algorithms and the adequacy of a discretisation.

In the following we compare results from three methods for calculating the
hydrodynamic coefficients on an oscillating body moving with a small forward speed.
Two of the methods result from the development of general procedures for the
computation of wave drift damping on arbitrary bodies. The third is a special
formulation for the hydrodynamic coefficients, which inherently satisfies the reverse flow
relations provided that the zero speed cross coupling coefficients are symmetric.

Overview of Formulation

Details of the boundary value problem are given in [1] and [2]. We use a system
of coordinates (x, y, z) moving along the horizontal x axis at the mean speed U of the
body, with the z axis measured vertically upwards from the undisturbed free surface. The
velocity potential is separated here into the steady component
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Under the assumption of low forward speed, on z = 0 the steady potential satisfies the
rigid wall condition, and the unsteady potentials satisfy
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where v = o%/g, t = Ua/g. We note the coupling in the free surface boundary
condition (3) between the steady disturbance x and the unsteady potential ¢,; and the

absence of terms in t2.

As the basis of each of our three numerical methods we use integral equations,
discretised by quadratic isoparametric elements. First we solve for X, using as Green
function a Rankine source and its image about the still free surface. Then in the

equations for ¢; we use a reversed flow Green function, satisfying the far field form of
(3) corresponding to there being no steady disturbance. This is employed in a modified
form of integral equation, which makes use of an integral on the inner waterplane Sgs,

to reduce the singularity on the body surface, in the manner described in [3]. This
results in
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The first term on the right hand side is integrated over the undisturbed surfaceS,
outside the body.

Method 1

In this, equation (4) is solved directly for the radiation potentials, using the
reversed flow Green function described above. Calculation of this function is difficult
and, in our present algorithms, quite slow compared with calculation of the zero speed

Green function. Furthermore, the potential ¢ ; on the free surface S, is an unknown in
the integral equation. It is, however, possible to truncate S, close to the body because
of the decay of the steady disturbance y. ‘

Method 2

This employs a perturbation expansion in the forward speed parameter t, and is
similar to that first developed by Nossen et al [2]. Differences in the numerical
implementation are our use of higher order elements and a modified integral equation.

The procedure is first to solve for the zero speed potential ¢}’, and then to use this in

an integral equation for the forward speed correction of order t. In each of the integral
equations the unknowns are only required on the body surface. As also the zero speed

and order t Green functions are much easier to calculate than in method 1, this
approach appears to be much more efficient.
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Method 3

This too is based on a perturbation expansion of ¢, to order t. The
hydrodynamic coefficents are also expressed as a perturbation series in t, and the
correction at order t.is derived in terms of ¢,‘~’ and its derivatives. The procedure has

been described in [1]. In the numerical disretisation it is necessary to extend the integral

on S, further than in the other methods, but the solution is fast since only the zero
speed potential is required.

Frequency Damping coefficient
va Method 1 | Method 2 Method 3
0.2000 2.310 2.322 2.315
2.318 2.315
0.5000 2.533 2.545 2.545
2.541 2.540
0.8000 2.224 2.249 2.246
2.253 2.250
1.0000 1.902 1.929 1.931
1.910 1.913
1.2000 1.641 1.661 1.643
1.647 1.663
1.4000 1.505 1.523
1.520
1.6000 1.455 1.442
1.441
1.8000 1.447 1.429
1.421
2.0000 1.448 1.458
1.445

Table 1 Cross-coupling damping coefficients. For each dimensionless frequency the upper
line gives -b,5(U) /pa’U, and the lower line gives -b,,(-U)/pa’U

Results

We consider the floating hemisphere, for which graphical results have been given
by Nossen et al [2]. Table 1 lists dimensionless values of the damping coefficems
coupling surge (1) with heave (3), namely -b;3(U) and -b4,(-U) for different dimensionless

frequencies. These have been calculated at a Froude number (U/y/ga) = 0.04, where a
is the radius. We note that at zero forward speed b;; = b;; = 0, and so the resglts give
a useful indication of reliability in predicting forward speed effects. The Timman-
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Newman relation requires that b;;(U) = b, (-U), and similary for the added mass
coefficients. Method 3 satisfies this identically, so only one set of results is provided in
the table (and these are independent of the value of t at which the calulation is

performed in method 3). The characteristics of the boundary element meshes are listed
in table 2.

Method Planes of Elements on Elements on Outer radius
used symmetry discretised S;  |discretised Sp  |of Sg
1 1 18 30 4.4a
2 2 64 96 4.9a
3 2 64 320 25.8a
Table 2 Characteristics of boundary element meshes
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DISCUSSION

MARTIN: Referring to your table 1, do you know which results are closest to the exact
answer, and why the Timman-Newman relations are not satisfied for Methods 1 and
2?

EATOCK TAYLOR & TENG: Discretization and truncation errors lead to imperfect
satisfaction of the T-N relations with Methods 1 and 2. I am not keen to speculate
which of the results in table 1 are closest to the exact answer, although I would point
out that the variability in all cases shown is less than 1 %. In most cases the results
from Method 2 satisfy the T-N relations more closely than those from Method 1.

GRUE: What is the role of the mj-tems which appears in Method 3 for the practical
evaluation of f132. What is the role of using high-order methods in comparison with
low-order methods in the evaluation of the drift forces at zero forward speed and
small forward speed (and then the wave drift damping coefficient)?

EATOCK TAYLOR & TENG: The m; terms appear in the formulation of Method 3 as
published in [1]. For the calculation of the results in table 1, however, the integral
involving these terms on the body surface was transformed again by application of
Tuck's result. This leads to an integral involving the product of the steady and
unsteady tangential components of velocity. We believe that one of the advantages of
using higher order elements is in the calculation of these velocities as gradients of the
velocity potentials.

CLARK: Apparently method 3 of your paper obtains the added mass and damping in
radiation problems with forward speed by direct calculation using zero-speed
potentials. In a paper submitted for publication Prof. Sclavounos and Dr. Emmerhoff
have achieved something similar for the wave drift damping coefficient in the
corresponding diffraction problem. In the wave drift damping procedures that you
mention in the paper have you considered calculating the wave drift damping
coefficient directly? (i.e. without numerical differentiation of the drift force).

TAYLOR & TENG: Method 3 (our ref. [1]) only requires the steady disturbance
potential and the zero-speed oscillatory potential for the calculation of added mass and

damping (¢01 and ¢10 respectively in the notation of Emmerhoff and Sclavounos).
Their formulation of wave drift damping, however, requires an additional interaction

potential ¢11. We have not so far sought to calculate this interaction term, so the
answer to your question is ‘no’.
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