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1 Introduction

Knowledge of steady horizontal drift forces and yaw moment due to the combined effect of regular
waves and a steady forward speed is of importance in the ship and offshore industry. Examples
are the added resistance on conventional ships and high speed vessels, and the steady lateral force
and yaw moment on sailing boats. Another example, important for moored ships and platforms,
is the slow drift damping mecanism, which is due to the usually positive change in the mean wave
drift force on a body introduced by a small forward speed. The steady drift forces and moment
are of second order in the wave slope if this can be assumed small or moderate. '

For zero forward speed these second order quantities can be obtained by time averaged squares
of first order, linear quantities which are simple to compute.

When there is a forward speed, U, however, new terms being products of U and a steady
second order velocity emerge in the expressions for the steady second order forces and moments.
Assuming that the fluid motion is irrotational, the second order velocity may be derived from a
velocity potential, 1¥(?), say. Thus, we need to know the solution for ¢(?), which may be a rather
complicated task.

For many practical problems, however, U is small, and higher order terms in U may be
neglected. We shall here neglect terms of O(U?), which simplifies the problem considerably. In
fact, we shall show that by this simplification we are able to express the terms containing %(® by
terms being products of two first order quantities, without really solving the (?)-problem.

2 The near field method

We consider a floating body moving horizontally with constant speed U and responding to long-
crested incoming regular waves with small amplitude. Let us introduce a frame of reference
(z,y,z) moving with forward speed U, in the same direction as the body, with the (z,y)-plane
in the undisturbed free surface, the z-axis in the direction of the forward motion, and the z-axis
positive upwards. Unit vectors (i,j,k) are introduced respectively along the z,y, z-directions. It
is assumed that the motion is irrotational and the fluid incompressible. The total fluid velocity

may then be written
v=V3+UVy, (1)

Here ¥, is the steady velocity potential generated by the moving body, independent of the incom-
ing waves and @ is the velocity potential due to incoming, scattered and radiated waves. x, and
& both satisfy the Laplace equation. The corresponding fluid pressure is given by the Bernoulli
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equation 0%
1 1
p= -5 + 50NVl - 1)+ UVx, - V& + 5IVel +92)+C() (2)

where C(t) is an arbitrary function of time.
In this section we assume that the forces and the moments are obtained by pressure integration

over the body (the near field method). In the next section the same quantities will be examined
by using the far field method. & may be written

=M + ¢ 4 @ (3)

where ¢(!) is the linear oscillatory potential proportional to the wave amplitude, and ¢(? and
¥(?) are the oscillatory and steady second order potentials proportional to the wave amplitude
squared, respectively. The terms ;U?|Vyx,|?, g2,3|V®|*|,08/0t and UV, - V& in (2) give rise to
steady second order contributions being products of two ¢(})-terms. The two latter terms also give
contributions through products of ¢(')-terms and terms describing the first order body motion.
All these contributions are known when the complete first order motions have been determined.
The term —pUVy, - V& gives, however, also rise to a term

— U / Uy, - V4 PndS, i=1,2,..6 (4)
Sm

which needs to be evaluated to consistently obtain the pressure integrated drift forces and drift
moments. These terms seems to have been disregarded in the literature. In (4) we have introduced
(n1,n2,n3) = n and (ng,ns,ng) = (x X n), with n being the normal vector, positive out of the
fluid and x = (z,y, z). Sp denotes integration over the wetted part of the body.

The contributions from (4) to the horizontal force components and the yaw moment may,
however, for small values of U by an integral transform be written in a proper form without
solving for %(3). For the horizontal forces it may be shown that

a9 oy
- . @)y, dS = — = | =
U /;B Vx,s - Vy'*¥n,dS pU [s,+s, o 6::,-d5’ i=1,2 ~(5)
and for the yaw-moment we obtain
8y 89 8x  Ox
- pU | Vx, - V9PnedS = —pU ¥ ds — pU —(z=—-y==)dS (6
P Sa Xs ¢ Ng P Sp+Sm an P SytSs an ( ay yaz) ( )
where we have introduced x by
X =—-2+X (7)

¥ denotes the steady velocity potential if the body is moving along the positive y-axis (corre-
sponding to x when the body is moving along the positive z-axis). Thus, for i = 1,2,6, (4) may
be replaced by integrals over Sy and Sp, where %(? enters in the form 8¢ /dn.

3 The far field method

An often used method to obtain the steady second order forces and moments is to apply the
principle of conservation of linear and angular momentum. Thereby the integration of the mo-
mentum may be replaced from the body surface to the restrained vertical cylinder at infinity.
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This procedure has the merit that the geometry is very simple and that the velocity potentials
for the steady flow and the wave motion may be replaced by their asymptotic values. These
simplifications make it possible to use analytical methods in the evaluation of the forces and

moments. Let S, denote the surface of the vertical cylinder at infinity. The mean horizontal
force may then be written

F=- /.;“(pn + pvv,)dS (8)

where a bar denotes the time average and v, = v - n. Correspondingly, using the principle of
conservation of angular momentum, the yaw moment on the body is given by

M, =—k-/ (Px X n + px X vv,)dS (9)
S

In the Bernoulli equation (2), &; = 0, and for the second order pressure C(t) = O(A?), where A
is the amplitude of the incoming waves. Furthermore, the coupling term pUVy, - V() reduces
to —pU8vy(» 5z,

Applying conservation of mass, Grue and Palm (1990) found that (8) reduces to

1, 06 5,880 R — )
- (22 e _ 7222 o e Ve in — Ta) 28
F "fc,.,zg(( 5 — UH(S—))nds p/S“(2(V¢ Fn = Ve ZE—)as
: ‘ . —— 8¢V oY@ :
(1) ——
+pUJ(‘/;~C = da+/s” Y dsdz) (10)

where C, denotes the waterline of S, and (%) the first order free surface elevation. Obviously
the last term of (10) is zero if the velocity circulation in the fluid is zero. It then turns out that
the terms containing 1(?) vanish in the expression for the horizontal forces. The physical reason
for this is that in the linear momentum flux the contributions at infinity from the pressure term
and the velocity term cancel each other. This is not true for the forces and the moment by the
near field method, a result which is obvious since the momentum flux due to the velocity term is
identically zero integrated over a rigid body.

In some special cases, however, as for example a boat sailing at a non-zero angle of attack, it
is expected that a steady velocity circulation is present, giving rise to the lifting force in formula
(10).

For the steady second order yaw moment we obtain

_ 96 G 80 _ 2 8¢
M. ’"”/,, 29 OF ds“’”/c,,(y 98 " & a9 %

oy  z gY@ 2/ —_—
_ 997 _ 2949 @d 11
”U/s,,(y oR "R o6 VIS TAU [, ym®lds (1)

where R is the radius of the cylinder, 8 the polar angle and ((® is a second order free surface
elevation. The formula (11) is valid for arbitrary U and water depth. We notice that the two first
terms are products of first order quantities. The last term will be neglected, being of O(U?). By
an integral transform it may be shown that the third term, for small values of U, may be recast
into the form

8¢y z gy / 2 oy
- - = dS = —pU ®n,ds — ds
"U/s,,(y 5E "R 60 U, ¥4 = |, sV om %)
U 7 a¢(2>ds (12)
==f Sp+Ss ' on
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Here
¥, =¥~y (13)
is the steady velocity potential if the body is moving along the positive y-axis (corresponding to
Xs when the body is moving along the positive z-axis).
We note that U is a prefactor of (5), (6) and (12). For small forward speed we may then

evaluate these integrals with 84(2)/dn obtained for U = 0. From the body boundary condition
we have

oY@
n = V,fz) on Sp (14)
where V(?) reads |
V®» = — n. [(f(l) + all) x x) - V]Ve)
d d
+ (@0 xn) (269 + Saw x x) - Ve (15)

Here, £ = Re{(£&, &2, £3)e"t} and al®) = Re{(£s,s5,86)e"t} denote respectively the first order
translations and rotations of the body. o denotes the frequency of oscillation.
At the free surface we have

8¢ 18 1 8¢ 334(1) 1 8¢(1) §24(1)

A SIS S FIEVIR - FTe) B - =

0z g ot ¢ o+ g® Ot 0z0t* g Ot 49z3 onz=0 (18)

The two first terms in the right hand side of (16) vanish. Introducing ¢(*) = Re(¢e’*t) for the
first order potential, we obtain for the third term

a¢(2) o 32(;3"

3 —-z—g-In'z(qS——az2 onz=0 (17)

Here a star denotes complex conjugate. In the general case we note that Im(¢8*¢*/8z?) vanishes
far away from the body since we have there that

where K is the wave number. This conclusion is, however, not true close to the body, except in
the special case when the body is restrained and have vertical walls extending deeply in the fluid.
In this case the steady second order velocity is zero in the entire fluid region. Furthermore, we
observe that the ¥(?)-field is generated by the presence of first order evanescent modes in vicinity
of the body, due to linear body motions or non-vertical body boundaries.

Introducing (14), (15) and (17) into (5), (6) and (12) we observe that 1(?) is replaced entirely
by products of first order quantities. The free surface integrals on the right hand sides of (5), (6)
and (12) are easily evaluated numerically since the integrands decay rapidly away from the body.

The term (12) is in numerical examples found to contribute with up to 50% of the forward
speed part of the yaw moment, while the rest is from products of two first order quantites. The
¥®@)-contribution is always found to increase the effect of the forward speed. The effect of ¥(?) is
found to be small in the near field method.
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DISCUSSION

TUCK: Can I make sure I understand some interesting symmetry properties of your
results. Namely, if you have a fore-and-aft symmetric ship moving in (exactly) beam
seas, there is a large yaw moment, proportional to the forward speed and the square of
the wave amplitude?
GRUE & PALM: Yes.

KRING: If you have found second order effects to be significant, what is your intuition
concerning higher-orders?

GRUE & PALM: The steady drift force and moment are to leading order quadratic in
the incident wave amplitude. Their magnitude are in several offshore problems
found to be large and of great practical importance. Examples are the added resistance,
wave drift forces at zero speed and the mean yaw moment acting on floating ships and
platforms. For moderate wave amplitudes it is believed that the 4th order
contribution, which is the next high-order contribution, will be small. For large wave
amplitudes, however, perturbation methods do not longer apply, and high-order
methods are important. :

CLARK: For floating bodies of deep draft and vertical sides, such as a T.L.P, can we
safely ignore the contribution to wave drift damping coefficient for Yaw Moment from

the potential y{2)?
GRUE & PALM: If the mean wave period of the spectrum is smaller than = 7 sec, the

effect of y(2) can be neglected. On the other hand, if the mean wave period exceeds 7 s
we observe in the calculations for a TLP that first order motions are present,

introducing the effect of y(2) which then becomes important. This is further discussed
by Grue & Palm (1992): “Mean yaw moment on floating bodies advancing with a
forward speed in waves”, BOSS 192
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