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In the present paper the steady free surface potential flow past 3D bodies moving with con-
stant forward speed is computed by means of a formulation involving the potential of single layer.
Lincar aud fully nonlinear conditions at the free boundary have been implemented. The numerical
method has been developed following the general features of the well known method proposed by
Dawson [1]. In this work, starting from the encouraging results obtained in [2] for 2-D test cases,
numerical computations have been performed for 3-D cases: for a submerged prolate spheroid the
fully nonlinear formulation has been used, while in the case of floating bodies (Wigley hull and
Series 60-C'g = 0.6) the linear problem has been solved.

The velocity potential ¢ satisfies Laplace’s equation in the fluid field and:

(1) ¢n =0 on the body
. Fr?
(2) z=n(z,y) = T(l - V¢ -Vg) on the free surface

Fr? ' |
(3) —2—V¢ -V(Ve-Vo)+ ¢, =0 on the free surface
(3) Frigiou+é. =0 on the free surface
(4) lim |Vé|=1

T——~00

where % =1-V: lis a parameter defined along a streamline lying on the free surface. Formula

(3'), describing 2-D and 3-D problems as well, is simple, elegant and suitable for numerical imple-
mentation, though some Authors discussed about its validity[3]; anyway it is easy [2] to show the
-equivalence between (3') and (3). :

The linear problem has been obtained assuming as basis flow the double model one, and ne-
glecting all the quadratic terms of the free surface potential, following Dawson[1]. The boundary
conditions have been implemented by two different approximations for the second derivative ¢y;.
The first is Dawson’s finite differences (FD) upwind operator [1], while the second is based on
analytical derivation (AN); in the last case the upstream condition ¢, = ¢; = 0 must be imposed.

The discretization is based on the collocation method; in the linear case the free surface panels
are arranged on z = 0, while in the nonlinear problem the actual free surface is 'followed’, step by
step. More details about the numerical iterative procedure can be found in [2].

In fig. 1 free surface contours of the linear and nonlinear numerical simulation for the steady
forward motion of a submerged spheroid are shown. In fig. 2, the wave resistance of the same body
is compared with experimental results [4]: the nonlinear solution is very close to the experimental
data. The influence of the grid spacing on the Wigley hull wave resistance has been studied for
the Neumann-Kelvin problem: in fig. 3 the results for four free surface grids successively refined
in the transverse direction are shown. The wave resistance computed with the finer one seems
to be the convergence value for nearly all the tested Froude nuinbers. Fig.4 shows the Wigley’s
wave resistance computed with different schemes and compared with experimental values [5]. As
expected, discrepancies between the wave patterns computed with Neuman-Kelvin and Dawson
formulations (fig. 5) are very small, because of the hull slenderness. This is not the case for the
Series 60 model also with a low C, (0.6). In fig. 6 a detailed comparison has been made with the
Series 60 experimental wave pattern for Fr=0.316 [6]. The three discrete models show significant
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differencies in the computed wave patterns: Dawson AN solution seems to be the most accurate
since the complexity of wave pattern is well catched; throats and crests are in the right position.
Dawson I'D schenme predicts a larger Kelviu angle due to the numerical dispersion of finite difference
approximation, while Neuwmann Kelvin solutior appears to be less accurate and too smoth. Finally
the wave resistance is reported in fig.7. The experimental data are taken [rom [7]. In all the Series

60 computations 1000 panels are used to discretize the ship while 1800 panels are used on the free
surface.
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Fig.1 Numerical wave pattern for a su bmerged spheroid (semiaxes ratio = .2, Fr=.5,h/L )

linear (bottow half). nonlinear (top half); longitudinal cuts: linear (dashed). nonlinear (solic).
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I'ig.2 Lxperimental (o) and nunierical wave resistance of the submerged prolate spheroid: linear
(dotted) and nonlinear (solid).
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Iig.3" Computed waves for the Wigleyv hull: a) Fr = .3, b) Fr = .5; Neuman-Kelvin formulation
(bottom half). Dawson lincar formulation (top half).
137




-2
x 10

2 - 800 panels on the hull o

Cw

24 -

A2 -

Fig.4 Wave resistance for the Wigley hull (Neuman-Kelvin formulation): free
surface grid refinement in trasverse direction;
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Fig.5 Wave resistance for the Wigley hull (2400 panels ou the free surface and
800 on the body): some comparisons.
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Fig.7 Wave resistance for the Series 60 (Cb=0.0. 25 Fri/dr = 31.).
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DISCUSSION

BERTRAM: Could explain in more detail how you solve the nonlinear equation on
the free surface? |

LALLI & al.: We remind that:
o(x,y,z) = Ux + o(x,y,z);

o(x,y,2) = Jg@%z&_;;) ds + J"_@_lfz_@ i
dB

where P(£1,£2,£3) are points of the hydrodynamic field boundaries.

The body surface 9B and part of the free surface S are discretized by means of plane
elements; the simple layer density o is assumed to be constant on every boundary
element.

The fully nonlinear problem is solved by an iterative algorithm, in which the free
boundary S is updated step by step; to initialize the procedure, the potential flow is
computed with a linear formulation. The iterative scheme consists of two cycles. An
‘internal’ one (index j), in which the following nonlinear system is solved iteratively:

(Dopi = 0 on 9B

(i)‘Pzi
2 = 0 on S.

When the solution of this system satisfies the required accuracy, in the ‘external’ cycle
(index m) the free surface is updated by the dynamic boundary condition, until the
convergence is reached. An under relaxation is used in both cycles: the value of the
parameters must decrease as the Froude number grows. The finite differences operator

. d . o .. o,

3
5l (with 1 = (a,B,y)) is the one proposed by Dawson. Although the implementation of

the term ¢y by analytic derivation gives very good results for the linear problem, in
both 2D and 3D, in nonlinear calculations we have obtained, so far, some strange
results: in this period, this delicate point is under examination.

Since the nonlinear system is solved with a certain accuracy at every step of the
external cycle, such procedure is rather time consuming, but, as shown in [2], it is very
robust and reliable: rather high Froude numbers flows can be simulated.

RAVEN: This paper contains very interesting information on the errors introduced by
the difference scheme. It appears that the numerical dispersion largely disappears
when using an analytical derivative instead. At first sight this seems to contradict the
result of e.g. the analysis of Sclavounos & Nakos (ONR 88), that the leading-order

dispersion (O(Ax)) comes from the use of constant strength source panels, not from the
differencing scheme; doing away with the difference scheme would thus reduce the
damping but not the dispersion (to leading order).

However, with analytical derivatives a different integral operator is used, which
results in a different numerical dispersion due to the source discretization. I could not
yet work out what the dispersion is, but it appears to be smaller than in Dawson’s
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method. Thus the larger numerical dispersion with the FD scheme probably does not
come from the FD scheme itself, but from the different integral operator connected to
its use. This reconciles the contradicting results, and answers my own question posed
after your lecture. '

LALLI & al.: We thank Dr. Raven for the comments. We' do not believe our results to
be in contradiction with the analysis of Sclavounos and Nakos (ONR 88). In fact their
analysis concerns three different forms (W1, W2, W3 in their paper) of the integral
operator that arises from the Neumann-Kelvin problem, but none of their discrete

A A
operators seems to be the one we solve. Two of the three discrete operators (W1, Wo)
possess distinct numerical properties due to the use of finite difference approximation.

A

In the third one (W3) the derivatives are obtained by analytic differentiation of a basic
function of order m; furthermore, the double derivative appears under the integral
sign. In the discrete scheme AN, although the continuous operator is exactly W1, the

A
discrete one is not Wi, since no finite difference approximation is used for the
convective term. However, using a piecewise constant variation of the unknown
source density over the panel, numerical results obtained with the AN discrete
“scheme seems to possess an improved numerical dispersion with respect to those
A

obtained with the FD scheme, which belong to the Wi type. This can be easily shown
with a simple 2-D result.
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In fig. 1 surface waves due to a submerged dipole (Fr=0.6) are shown. In both a) and b) |
the analytical solution is the solid line and the numerical results have been obtained
with 12(—) and 60(- - -) panels per wave length. In a) the FD solution shows the well
known underprediction of the wave length. In b) the AN solution with only 12 panels
per wave length gives a reasonable agreement with the analytical one, while with 60
panels the numerical AN and the theoretical solutions are almost coinciding

TUCK: A very minor pedantic matter: I believe there is no such thing as a “Neumann-
Kelvin boundary condition”. There is a Neumann-Kelvin boundary-value problem,
namely to solve Laplace's equation subject to a Neumann boundary condition on the
hull and a Kelvin boundary condition on the plane of the undisturbed free surface.
LALLI & al.: We agree with Prof. Tuck. Sometimes in the speech a lapsus can occur.

EGGERS: There is an old quotation due to Oscar Wilde, saying that consistency is the
excuse of the unimaginative; this seems to math with Dr. Bertram's heretic comments
expressed earlier today. However, even if I do not want to raise a heated discussion, I
cannot accept the statement that it is easy to show the correctness of Dawson's free
surface condition, although that meanwhile it even has been accepted as a basic for
thesis work on viscous effects in Sweden. In our community at least, there should be
consensus that when extending his analysis to 3-D problems, Dawson has
inadvertently disregarded a curvature effect on derivatives along a curve; it may well
be that this effect is unimportant for calculations.

LALLI & al.: First of all, we confirm that the equivalence between the classical form of
the exact nonlinear boundary condition:

Fr2
(1) —2—V¢.V(V¢.V¢)+¢z=0
and the following form:
2 Fr2 o2 ¢n + 62 =0
can be demonstrated, both in 2D and in 3D. In fact, starting from (1):
3 3
Fr2 9 9 512 2 0p/dxi 9
TR 9%; 9% |grad ¢ |4 =Frs Igrad¢| —Igrad¢l % lgrad¢|
i=1 1:1
and using the definitions:
3 3
d d9/dx; 0 d¢/ax; of
== ———; f1= ———=—= |grad ¢|
ol 2 grad ol oxi + & Z grad ol axi - 81240
i=1 i=1

we get easily (2). On the other hand, starting from (2):

(Vo .1 aVo ol
o1%dn = V¢‘V¢_—8QI—~ = V¢.V¢(—§T'.I+V¢.ﬁ)
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but:
ol
V¢'5f =-KVoé.n=0

for any value of the curvature K; finally, it is easy to show that:

Vo.Vo [V(ve).1].1 = %V¢.V(V¢.V¢)

Dawson was not interested in the fully nonlinear problem, so he didn't write the
condition in form (2), anyway he had the merit to suggest the introduction of
derivatives along the streamlines lying on the free surface, that allow one to obtain a
simpler formation, in both linear and nonlinear cases. We agree however that the
calculations performed in [1] are not so easy to follow, mainly because Dawson does
not consider clearly as separate problems the introduction of derivatives along
streamlines and linearization, but we don't agree at all with the criticisms made by
Jensen, Mi and Sdding (Jensen et al., 1986) and by Raven [3]. In his paper, in the first
equation of V paragraph (which seems to be the exact condition), Dawson omits the

1
term 5 ¢ (¢x2+¢y2+¢22)z: this could be considered an error, although this term should

be anyway neglected after linearization. But in all the calculations he performed to
obtain the discussed equation (14) (D12¢1); + gz = ©12dy there are no errors: the only

hypothesis used (but not mentioned) is that the free surface potential ¢' generates a
flow along the basis flow streamlines: this statement is a consequence of the
linearization. So we don't think that Dawson neglected any curvature effects. For
example, in Jensen et al. (1986), we don't agree with the comments between equations

(12) and (13): though (V®); # V(P)), nevertheless it is true that:

1 1

5 V6. V(@12) = 561 (@) = &1 Dy dy

hence (12) always transforms into (13).

One may of course discuss about the simplicity of Dawson linearization, and on some
possible improvements, for instance by means of Taylor expansions (but Taylor
expansion should be made around the double model free surface elevation, and not
around z = 0 plane). Anyway, our opinion is that it is very important, in the wave
resistance problem, to deal with the exact nonlinear condition, as many Authors now
do: consequently, we concentrate our efforts on this goal, and we think it is not
worthwhile to implement a more complicated linear formulation. Moreover,
numerical results show that Dawson linear condition, very easy to treat numerically,
is a significant improvement with respect to the classical Neumann-Kelvin problem.
We thank Prof.Eggers for his question, allowing us to clarify our statements; we also
must acknowledge Jensen, Mi and Séding (Jensen et al., 1986) and Raven [3] for their
stimulating comments, although we don't agree with them.

Ref.: Jensen G., Mi Z.-X., Séding H., “Rankine Source Methods for Numerical
Solutions of the Steady Wave Resistance Problem”, 16 Sym. on Naval Hydro., 1986.
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