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A NEO-CLASSICAL APPROACH TO WAVE-DRIFT DAMPING

by J. N. Newman
MIT, Cambridge, Mass., USA

Vessels moored in deep water can experience resonant low-frequency motions in the horizontal
plane, due to excitation from second-order difference-frequency forces. An understanding of the
relevant damping mechanisms is essential in order to estimate the resonant response.

Conventional first-order wave damping is asymptotically small at low frequencies. For example,
the horizontal exciting force in long wavelengths is proportional to the pressure gradient of the
incident waves, or O(g?) for waves of unit amplitude and low frequency o. Thus, from the Haskind
relations, the horizontal damping coefficients are O(0®). On the other hand, the second-order wave
force acting on the body tends to a finite limit equal to the mean drift force, as the difference-
frequency tends to zero. Thus, in the absence of other damping effects, resonant second-order
motions will occur with velocity proportional to O(¢~*¢) and amplitude proportional to O(c~7).

The relevance. of ‘wave-drift damping’ has been established from several experimental and theo-
retical efforts. The usual theoretical approach considers the added resistance in waves associated
with a quasi-steady translation of the body, with small velocity U. This force is proportional to
the square of the incident-wave amplitude, tending to the zero-speed mean drift force as U — 0,
with the leading-order correction proportional to U. The derivative with respect to U, evaluated
at U = 0, represents a force proportional to the velocity which can be interpreted as a damping
coefficient. In some references this coefficient is derived analytically, using pertinent asymptotic
analysis for U << 1; in others the damping coefficient is evaluated by numerical differentiation,
from computations of the added resistance with small nonzero velocity.

In the present work wave-drift damping is analyzed in a more classical manner, without a quasi-
steady forward velocity. The essential concept is that, whereas the linear wave damping is asymp-
totically small with respect to the frequency of oscillations in calm water, this is not the case for
the higher-order damping coefficient associated with low-frequency oscillations in the presence of
tncident waves.

Consider the diffraction problem for incident waves with frequency w and amplitude A, and also
the radiation problem resulting from oscillatory surge motions with displacement £(t) = £, sinot.
Ultimately it will be assumed that ¢ << w, but this approximation may be postponed. For this
combination of inputs, the first several terms in the perturbation expansion of the velocity potential
are as follows:
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The potentials ¢.. are complex, and depend on the space coordinates x. The two subscripts refer
respectively to the order of magnitude in A and £. Superscripts are used when necessary to denote
harmonic time dependence in the respective frequencies. The conventional first-order diffraction
and radiation potentials are ¢;, and ¢o;. The higher-order terms in (1) satisfy inhomogeneous
boundary conditions, with various nonlinear effects from interactions of the lower-order potentials
and body motions. Except for the incident-wave component of the diffraction potential, each ¢ma
satisfies a radiation condition in the far field.

Analogous perturbation expansions apply for the hydrodynamic pressure and the resulting force
acting on the body. Thus Fy, is the first-order exciting force, F.‘fg ) is the second-order mean drift
force, and the first-order force due to the surge motion is expressed in the usual form

Fo1 = —(i02 Ago + 0 Boo) €01 (2)

Here Ago and Byg are the conventional added-mass and damping coefficients. Similarly, the wave-
drift damping coefficient B;o is defined as the corresponding coefficient of the force

F;g) = —(10® Azo + ¢ B3o)€01 (3)

This force is of second-order in the wave amplitude, and of first-order in the surge amplitude.

The surge force can be derived from pressure integration in the form
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The term proportional to £(t) and the neglected higher-order terms account for the transfer of
the pressure from the oscillatory (S;) to the mean (S,) position of the body surface. Since the
linear term is in phase with the surge displacement, and the neglected terms are of higher order
in £ relative to the force (3), these can all be ignored in computing the component of (3) in phase
with the surge velocity. The waterline integral in (4), along the mean contour C, accounts for the
oscillatory intersection between the body and free surface.

After substituting the appropriate components of (1) in (4), and using (3) to separate the damping
coefficient,

o601 Bao = pRe / [s (io8) + V4 - Vou + 1Ve50 - VBT +¢{7))neds
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Hereafter the frequency of surge oscillations is assumed to be asymptotically small, thus ¢ << w
and 02¢ << g where £ is the characteristic length scale of the body. With the surge velocity defined
as £(t) = ooy cos(at), the corresponding potential ¢, is real, of order o, and non-wavelike in a
suitably defined inner region. Substantial analysis is required to simplify (5), using appropriate
boundary conditions on the body and free surface, together with Green’s and Stokes’ theorems.
The contribution from the higher-order potentials ¢(2?,) and ¢(2°1) can be evaluated in this manner,
in terms of an integral over the free surface of lower-order potentials.
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The potentials ¢(1f) are of primary importance. On the (mean) body surface these potentials satisfy
the inhomogeneous boundary conditions

$E) = £1i€5,6104m 6)

The corresponding free-surface conditions (on z = 0) are

fw
9¢(1f.) -(wx ‘)24’(1:1“ = §;¢’° ("024501; + g¢01n)

. (7)
+ :2%4501 (—w?d10s + 9810ss) = i(w £ ) V10 - Vo

The solutions can be expanded in the forms
¢ =+1Do+ 18, £ 1D, + ... (8)

where (S, D) denote the sum and difference ¢t £47), respectively. The potentials D; and S; are

of order ¢’, and of the same order as ¢(1T) with respect to the wave and surge amplitudes. Since

the right side of (7) is proportional to ¢o; = O(c), the leading-order coefficient in (8) satisfies a
homogeneous free-surface boundary condition. The appropriate potential which satisfies (6) and
the radiation condition is

Do =101 (¢1o= + fKCOSﬂ'ﬁxo) ~ (9)

The potential S, is subject to a homogeneous body boundary condition and the free-surface con-
dition .
gSl, - w’Sl = 20)0'2Do + C.w0¢10¢01,, - 2$-WV¢10 . V¢01, onz=20 (10)

After further analysis the wave-drift damping coefficient is evaluated in the form
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where the second integral is over the free surface.

This rather complicated expression can be simplified considerably by using Green’s theorem to
replace the integral over the body by integration over the free surface and a control surface S,
which surrounds the body. The contributions from the waterline and free surface cancel in the final

result:

062 By = ~LpRe i / /s (Dt Sy — D3S1a)dS (12)

This equation can be confirmed from a complementary analysis based on energy flux, but that
approach is no simpler. Since the work done by the wave-drift damping coefficient is proportional

to o? it is necessary to analyse the potential D; in (8), and also the potential 4’(102) in (1).

The principal complication in evaluating (12) is the need to solve for the potential S;, which satisfies
the inhomogeneous free-surface condition (10). Special attention is required for the first term on
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the right side of (10), since the potential D is a solution of the homogeneous free-surface condition.
The solution can be expressed formally as
2wa? 3

S; = P 'a-I"{"Do +S; (13)

where S, satisfies (10) without the term 2wo3 Dy on the right-hand-side. For large values of the
horizontal radius R, the scattered component of D, is asymptotic to f(§)R~!/2 exp(Kz — iKR),
where f(6) is a slowly-varying function of the angular coordinate § about the vertical z-axis. Thus
the first term on the right side of (13) is secular with its amplitude proportional to R'/2. The
remaining terms on the right side of (10) are of order 1/R®, and the corresponding solution S, is
regular with the same far-field form as a first-order radiating wave.

Since the secular solution in (13) is nonuaiform in the far field, analytical problems arise regarding
the correct interpretation of the.integral over the control surface in (12). Another issue is the
computational problem of evaluating the derivative in (13). Both of these problems can be overcome
in the following manner. First substitute (13) in (12), with the control surface situated at an
intermediate radius where K R=0O(1). From the chain rule it follows that

o€, Byo = —LpRe ,//s (Do 51 — Dy§1a)dS

_ ;5;_038;% /S (Di Do — D} Don)dS.

3

(14)

In this form the evaluation of the derivative with respect to the wavenumber is simplified, and the
control surface can be located arbitrarily far from the body. The integrals over S, can be evaluated
in terms of the far-field scattering amplitudes f(#), in & similar manner as the mean drift force.

This work differs in its basic approach from the papers by Nossen, Grue, & Palm (1991) and
Emmerhoff & Sclavounos (1991), which are based on the concept of a small quasi-steady forward
velocity. In those works the potential corresponding to (8) satisfies a homogeneous body boundary
condition, and there is no explicit consideration of the component (9). Nevertheless there are many
similarities in the analysis, and the final results are expected to be equivalent.

ACKNOWLEDGMENT
This work is part of the Joint Industry Project ‘Wave effects on offshore structures.’

REFERENCES

O. J. Emmerhoff & P. D. Sclavounos, 1991 The slow-drift motion of arrays of vertical cylinders,
submitted for publication.

J. Nossen, J. Grue, & E. Palm, 1991 Wave forces on three-dimensional floating bodies with small
forward speed, J. Fluid Mech., 227, 135-160.

214




DISCUSSION

GRUE: Is there an easy way to separate out the effect on the wave drift matrix of the
yaw angle compared to the yaw angular velocity. I would expect the yaw angle (the
position) to be important to the forces and moments. Is the same true with respect to
the yaw angular velocity?

NEWMAN: In fact, the wave-drift damping coefficients do not depend on either the
yaw angle or yaw velocity, both of which are assumed small. (This situation is the
same as in conventional damping coefficients derived from linear theory.) But if by

‘yaw angle’ you mean the O(1) angle of incidence (B) of the waves in relation to the
body, it is clear that this angle is of importance.

EATOCK TAYLOR: If this approach is ‘neo-classical’, one can ask to what stylistic
school the conventional approach belongs. Analogies in the world of painting might
be ‘abstract expressionist’, or simply ‘abstract’. ‘Realism’ would perhaps not be suitable.
In architecture it might be suggested that ‘brutalism’ is the appropriate ‘ism’ to apply!
But I would argue for ‘functionalism’. On a more serious note, I would be interested to
know if there are any numerical difficulties we should be aware of, in the exciting
prospect of obtaining a 3x3 damping matrix by use of the ‘neo-classical’ method.
NEWMAN: The most significant numerical difficulty I forsee is in the boundary
condition (6) on the body, which requires double spatial derivatives of the first-order
diffraction potential.

PALM:

1. I think this work is important since it derives a unified theory for the three
horizontal modes. For surge and sway, however, which has been considered in the
quasi-steady theories, I do not expect that your approach leads to any new results. For,
if you instead are working in a body-fixed frame of reference the non-Newtonian force

is proportional to £2 and may be neglected. Hence we are considering a fixed body in a

slowly varying current. It seems to me obvious that the first approximation as ¢ — 0,
is obtained by considering the body imbedded in a steady current.

2. You must in your approach assume that the horizontal displacement of the body, &,
is small, which is not realistic. This assumption is not made in the quasi-steady
approaches, but we end up with the same results.

Do you have any comments?

NEWMAN: I accept the first point, although it is not completely ‘obvious’ in my view.
Regarding the small-amplitude assumption it should be noted that in both approaches

the objective is a damping coefficient which is independent of &, or the coefficient of

the force component proportional to & Since this coefficient is independent of & the
magnitude of § is irrelevant.
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