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1 Introduction

Consider the scattering of two-dimensional surface water waves by a submerged thin plate, I'; we assume
that T is a curved arc of finite length. Historically, most of the work done on this scattering problem
assumes that the plate is flat and horizontal or vertical, and that the water is deep. Evans [1] has
given an exact solution for a vertical plate, and reviews earlier work. Horizontal plates in water of
finite depth have been considered by Patarapanich [7] (using finite elements) and by Mclver [5] (using
matched eigenfunctions). These two methods cannot readily treat deep water and/or angled plates, and
they cannot readily use information on the known singular behaviour near the plate edges. In addition,
it is difficult to impose the radiation condition with the finite-element method.

Here, the problem is reduced to the solution of a hypersingular integral equation for the discontinuity
in potential across the plate. Once found, this discontinuity can be used for the direct calculation of the
reflection and transmission coefficients, R and 7. We show how an approximate solution can be obtained
by using a truncated series of Chebyshev polynomials of the second kind, multiplied by an appropriate
weight function. The unknown coefficients in such an expansion can be found by collocation, and, once
found, can be used for the direct calculation of R and 7. We have used this method for a flat plate,
submerged in deep water. We have validated the method by reproducing published graphs of |R] for
vertical and horizontal plates. We also give some new results for an inclined plate that makes an angle
of w/4 to the vertical.

2 Formulation

Classical linear water wave theory is used and all motion is assumed to be simple harmonic in time
with angular frequency w. With these assumptions, we can introduce the harmonic velocity potential
R{oé(z,y)e""*}. An incident train of waves with potential ¢;nc is assumed, whereby the total potential
may be written as ¢ = ¢inc + ¢sc, Where the scattering potential ¢, is sought. As well as being harmonic,
¢sc must satisfy

Kdse + ég}-/’ﬁ =0  on the free surface, y = 0, (1)
and
%%‘.S = _%%’5 on the plate, I. (2)
] q

Here, K = w?/g, g is the acceleration due to gravity and 8/8n, denotes normal differentiation at the
point ¢ on I'. Choosing the appropriate fundamental solution G and applying Green’s theorem to ¢,

and G, we find

e L [ sy 2620 )
outP) = 3 [[16@) 5D as, 3
where P is any point in the fluid. Applying (2) to (3), we find [6)
d Cr P,({) a¢inc
= o tine r, 4
f[‘ﬂ “Bnyon, dsq onp Pe “)

which is to be solved for {0(q)]; the integral is to be interpreted as a Hadamard finite-part integral.
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3 Method of solution

Consider a flat plate of length 2a; we take a = 1, without loss of generality. So for a flat plate in deep
water, parametrisation of (4) leads to

f—ﬂt—)—-dt-i-/lf(tl, t)dt = 2z} z
L Gogp WL ndt=2mhs), - —l<s <, (5)
where . X
2 - Xx? 2RY o dk
L(s,t) = smg——— 4 s -2 -kY
(1) (X2+12)2 A-+y2+2"j€ e coskX (6)

h(s) = agsi,.c/an,, X =(s=t)sina,Y = (s+t)cosa+2d and f(t) = [¢(g)]. Also, d is the submergence
of the mid-point of the plate and « is the angle that the plate makes with the vertical. For a submerged
plate, the leading behaviour of f(t) at the edges of the plate is known to be [6]

fiy~V1Fifz ast—=l, (7
where f: are constants. We build this into a numerical procedure for solving (5) by writing
f(t) = VI-12g(1), (8)

and then approximate g(t) using a polynomial. Since

VI =2 ULt
f ———-—.,g-—) dt = —m(n + 1)Un(s), 9)
-1 (s=1)? : : :
where U, (t) is a Chebyshev polynomial of the second kind, a natural choice is
N
9(1) =) anUn(t) = gn(t), (10)
n=0

say; by definition,
sin(n + 1)8

Un(cos8) = — (11)
We determine the unknown coefficients a, by a straightforward collocation scheme,
N .
> an[=w(n+ D)Ua(sj) + Kalsj)] =27h(s;),  j=0,1,...,N, (12)
n=0
where .
Ka(s;) = / Un(t)VT = L(s;, ) dt (13)
-1

and the collocation points s; are chosen as

sjzcos(ilj,:;%), i=01,...,N

Golberg [2] has proved that this method is uniformly convergent, so that

max lo() ~on()]| =0 as N —co

4 Results

The method has been validated against published solutions for vertical and horizontal plates. As an
example of its efficacy for another configuration, we have computed the reflection and transmission
coefficients for the two-dimensional scattering of water waves by a flat, submerged plate at an angle
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of 7/4 to the vertical. [t is straightforward to show that, in terms of the unknown coefficients in the
expansion (10), the reflection coefficient for any o is given by

N
R = _[\-e-f\'d-‘“ Z an ﬁ" - Zn+2]
=0

with the corresponding traunsmission coefficient given by

N

T_1= Ke-kd+x'a Za“ [Ln - Ln+2]|

n=0

(14)

(15)

where L, = (r/2)(=1)"I,(Ke'®) and [, is a modified Bessel function. The overbar denotes the complex
conjugate. Figure | contains graphs of |R|. The value of N was 15 for these results.

IR
1.0

0.9 4

0.8 4

0.74

0.6 -

0.5 -

0.4

0.3 -

0.24

0.1

0.0

d/a = 0.

=1
o

\

d/a = 0.85

d/a=1.0

0.0

1.5

Figure 1: Reflection coefficients for a plate at an angle of 7/4 to the vertical, plotted against Ka for

various values of d/a.
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5 Discussion

We are currently developing the above method in two directions: surface-piercing plates and trapped
modes.

5.1 Surface-piercing plates

For a surface-piercing plate, it is convenient to use a different parametrisation of the plate, so that ¢ = 1
corresponds to the lower edge and ¢ = ( corresponds to the point where the plate meets the free surface.
The behaviour of f(t) near ¢t = 0 is no longer a square-root zero: f(0) is an unknown finite constant.
Nevertheless, we find that a similar method (Chebyshev polynomials and coliocation) works well; the
main difficulty is in controlling the strong singularitiesin Lat X = Y = 0.

We note that this problem has a long history, going back to Ursell’s solution (8] for a vertical plate,
and John's solution (3] for an inclined plate.

5.2 Trapped modes

Recently, there has been considerable interest in trapped modes. In particular, Linton & Evans [4] have
computed trapped modes above a submerged, horizontal flat plate in water of finite depth, using matched
eigenfunctions. The present method should extend to problems of this type, allowing computations for
deep water and plates of any shape.
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DISCUSSION

TUCK: The problem with a <0 (la| small) would seem to have some relationship to
a beach problem.

PARSON & MARTIN: Changing the sign of a is equivalent to changing the direction
of the incident wave. It is well known that Tand IR are the same for both directions.
However, we might not expect to see this equality in experiments, especially for

surface-piercing plates, because wave breaking could occur for o < 0, leading to a
reduction in transmitted energy.
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