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Abstract

Second-order Stokes'-expansion computations of survival-wave loads on tension-leg oil rigs have recently been
compared with a new slender-body theory. To illuminate the results obtained, we consider here the 2-D
problem of a thin horizontal circular cylinder fully immersed parallel to the crests of deep-water regular waves,
and oscillating horizontally. The slender-body theory shows immediately that the second-order loads are the
steady vertical one which alone would be felt on a fixed cylinder, plus steady and oscillatory loads, both
horizontally and vertically, tracable to the position-dependence of the first-order load. Precisely the same
answer is obtained below by Stokes' expansion, for which a closed-form solution is obtained using complex
potentials. This time, the loads are tracable partly to the dynamic pressure, partly to the first-order pressure-
gradient, and partly to the second-order velocity potential. In all three cases they appear as the "difference of
two large numbers”, which is consistent with the well-known requirement for very fine discretisations with
second-order Stokes’-expansion computations.

1. Slender-body Theory Resuit
The new slender-body theory in question here is that described in Rainey (1989), according to equations (8.1)-
(8.3) of which the load (per unit cylinder length, including the fluid reaction to cylinder acceleration) is:

-Mu M’(—+VU) + VM'(v-u) (1)

Here M and M’ are the tensors of added mass and added-mass-plus-displaced-mass (both per unit length),
v and V are the velocity vector and velocity gradient tensor in the undisturbed incident wave, and v is the
velocity vector of the cylinder (bold type denoting vectors/tensors). For our case of a circular cylinder M is
poc, and M’ is 2pc, where p is the water density and ¢ the cylinder cross-sectional area, so this reduces to:

-pCuU + 2pd—+VV) = -peU + 2pca o

where a is the water particle acceleration in the undisturbed incident wave.

For comparison with Stokes' expansion, we now extract from this expression the terms of second order in
waveheight. We will assume henceforth for simplicity that the oscillation is exactly sinusoidal, so there are no
such terms from the first (inertial reaction) part. They therefore come from the second part. At a fixed location
in reqular deep-water waves where the horizontal water velocity is vcoswt, say, the second-order constituent
of a is well-known to be a steady vertical acceleration of magnitude kv?, matching the steady vertical gradient
of the dynamic pressure. This gives a steady upwards force of 2o0ckv?, which is the only second-order load if
the cylinder is fixed.

However, since (2) above applies at the instantaneous displaced position of the cylinder (rather than its mean
position as in Stokes' expansion), the motion of the cylinder produces a slight oscillation in the phase of the
first-order load, as the cylinder moves upwave and downwave. This has been recognised for some time (see
Rainey, 1978, discussion, & Rainey, 1980, where it is shown experimentally that it can actually lead to a
dynamic instability!) as another source of second-order load. Adopting the standard complex-load notation
(Batchelor, 1967, p.433 - the real part is the horizontal load and the imaginary part is minus the upward- -vertical
load) the first-order load on the cylinder, at its instantaneous displaced position x, is, from (2):

2pcvwie®t® = 2pcveie™ (1 -kx«+..] Q)

Here x, the horizontal water velocity vcoswt above, the direction of wave travel, and the horizontal load, are
all taken to the right (and we can clearly omit the inertial reaction). If we allow for arbitrary amplitude and phase
of the horizontal cylinder motion by writing:
ot o
X = R[rve®| = M (4)

2

where r is complex (and where r = 1 corresponds to the cylinder moving horizontally with the water particles,
to first order), the total complex second-order load becomes:

-ipckv?[(2-p + re? (8)
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including the steady vertical load 2ockv? found earlier. In general, evidently, the motion modifies this load, adds

a steady horizontal load (a "drift force", in the offshore parlance), and adds both horizontal and vertical second-
harmonic loads.

2. Stokes’ Expansion; The First-Order Complex Potential
To keep the algebra manageable in a Stokes' expansion analysis of the problem, it is necessary to use
complex potentials. We first write the velocity potential of the incident waves as:

~Yevsin(ut-ky = R[Zetr] ©)

where position coordinates x, y, in the direction of wave travel and vertically upwards (measured from the mean
posion of the cylinder), are replaced by the single complex coordinate z = x+iy, in the standard manner
(Batchelor, 1967, Sect 6.5). To describe the flow near the cylinder, we next expand this potential as a Taylor
series about z = 0, thus:

. . 2
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where the z term represents the uniform flow, and the z° represents the simple "extensional” flow non-uniformity
- no further terms being necessary for our limiting case of a thin cylinder (Lighthill, 1979; Rainey 1989 Sect.2).

The first-order diffracted potential in Stokes' expansion is that produced by our cylinder fixed at its mean
position z = 0, which is readily given by the “circle theorem" (Batchelor, 1967, p.422) as:
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where b is the radius of the cylinder. The first term is a simple dipole reaction to the uniform flow, and the
second a quadrupole reaction to the incident "extensional motion®. To this must be added the first-order
radiated potential, which is that produced by applying the cylinder-velocity boundary-condition, but at the mean
position of the cylinder. This gives via (4) another simple dipole:
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The sum of (7),(8)&(9) is the first-order complex potential w,. We will need below the first-order complex
velocity dw,/dz; collecting terms this is:
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3. Stokes’ Expansion: The Dynamic Pressure Load

Perhaps the simplest second-order load in Stokes’ expansion resuits from integrating the dynamic pressure
over the body surface; following standard complex-variable techniques (Batchelor 1967, p.433) we can write
this load (per unit cylinder length) in complex form as:

aw, dw1 dw, qu
- = “®bdb (an
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where 8 is the angle measured anticlockwise around the cyllnder from the downwave (x) direction. To evaluate
the integral, we can, from (10), first write down dw,/dz on the surface of the cylinder as:

Velol[Ere-ZB” -ikbe® + VG',""[(-é-—1)9'ZB-/kb9'SB] (12)

and then write down its complex conjugate as:

Ve-m{_’_emn Ikbe™® + ve'°1(-5-1)e2"+lkbe3‘°] (13)

In the product of (12) and (13), only the ¢” terms will survive the integration, because of the e term in (11)
The complex second-order load (per unit length) from the dynamic pressure is therefore:

1 Al T i 2ty T p200 (14)
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In a general-purpose computer program of course, every term will be retained in the pressure integration. and
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all the cancellation just invoked wull take place numerlcally Strikingly, there are cancelling pressure terms, with
an angular dependence up to e*, which are (kb)"’ times the non-cancelling one. For a typical tension leg oil

rig in survival waves, (kb)"" is 10, so in carring out its numerical integration, the computer program will be up
against a "signal-to-noise ratio" of 0.1.

4.Stokes' Expansion: The Pressure-Gradient Load

Another second-order load in Stokes' expansion is that produced by the motions of the cylinder through the
first-order pressure gradients. In our case the motions of the cylinder are purely horizontal, so we require the
horizontal gradient of first-order pressure, which is -p times the rate-of-change of first-order horizontal velocity. -
Thus this second-order load can be written in complex form as:

f[1(dw dw n/e t_rve-™
2 dz dz 2iw

We therfore now seek €” terms in the sum of (12) & (13), rather than in their product, as we did above. This
time there is only one, so that our integral reduces to:

Yo R bab (15)
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2iw
where, just as above, there are cancelling pressure terms (kb) " times larger, again with an angular dependence
up to e*. When (16) is added to the second-order load from dynamic pressure (14), we have the same steady
load as that obtained by slender-body theory (5). This is to be expected, since the second-order potential,
below, cannot generate a steady load.
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5. Stokes’ Expansion: The Second-Order Potential, and its Load
If we write the first-order complex velocity (10) as {-in, in other words denote the first-order horizontal and
vertical velocity components as ¢ and 7, then we note that:
Ew X (17)

dz? ox ax
since we are at liberty to differentiate a complex variable by choosing dz parallel to the x-axis. The second-
order error in the first-order cylinder-surface boundary condition, arising from a horizontal cylinder motion dx,
can therefore be written:

, a?
6x(-§f—(oose + %?(—sme) = m[éx-dz—v:’-e”] (18)

with the sense being outwards from the cylinder surface. Inserting x from (4) for éx, and d°w,/dz* from (10),
the second-harmonic constituent of this expression becomes:

4;2 /[rez"*"( -ro-2R _jkbe® +(2-ne?® 3/kbe3‘°) 762 168 +ikbe P +(2- @ 2R +3ikbe#)]  (19)
the steady consituent being immaterial, of course, since it gives no load. There are also second-order errors
in the first-order boundary condition at the free surface, which are well-known to give zero second-order
incident potential, but lead to the celebrated “microseism effect’ on tension leg platforms in short waves (see
esp. Newman, 1990), named after the well-known analogous oceanographic phenomenon (Wehausen &
Laitone, 1960, pp 665-666). In our llmitlng case of a thin cylinder, however, these vanish in comparison with
(19), producing a load proportional to ¢? rather than ¢ as below. See Rainey (1989 Sect.4), and, for a fixed
vertical cylinder, Lighthill 1979. In our case of a fully-immersed cylinder we can see that this must be so
because the free-surface boundary-condition error will clearly fall with cylinder diameter - and the resulting
second-order potential already produces a load proportional to ¢, because it acts like another incident
potential.

The relevant second-order potential is therefore just that required to cancel the outward flux (19). That flux has
the same angular dependence as the outward flux produced by a sum of multipoles b "/nz", so the complex
second-order potential w, can be readily seen to be:

'Vz[ w(rz ) . e'z""'(rlkb-—+r(2 r) +3rlkb——)] (20)

i.e. a dipole, two quadrupoles, and an octupole. The second-order complex force produced by it is:
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where the integration once again involves the cancellation of terms (kb)”’ times larger than the non-cancelling
term, with an angular dependence again up to .

Very satisfactorily, we see that this third Stokes'-expansion load, in combination with the other two from Section
3 & 4, adds up as it should to the load predicted by slender-body theory in Section 1.

6. Conclusions
In a sense, there is nothing new in the above resuits - they merely confirm in a particular case what is already
established in Rainey (1989), namely that a new development in slender-body theory allows wave loads on thin

members of offshore structures to be calculated to second order in waveheight. However, the example studied
does perhaps illuminate the following points:

1)Horizontal drift forces do not, in general, depend on interference effects between structural members.
It has sometimes been argued (e.g. Pizer, 1990, discussion) that since they do depend on interference effects
in the case of fixed, vertical cylinders, and since the slender-body theory omits them, then it must be of
dubious value on, say, semisubmersible oil rigs in long waves. The above example shows that once a rig
moves, its members will in general feel a horizontal drift force, which will increasingly dwarf that due to member
interactions, as the members become thinner relative to the wavelength. ’

2)The second-order potential arising from the body-surface boundary condition, rather than that arising
from the free-surface boundary condition, controls the loading on moving structural members as they become
thinner relative to the wavelength. This is interesting in view of the remarkable importance of the latter potential
in short waves (again see esp. Newman, 1990): once more it appears dangerous to generalise from fixed
structures, on which the former potential is zero.

3)As structural members become thinner compared with a wavelength, Stokes' expansion compuations
increasingly mean finding the "difference of two large numbers". In the example considered here, there are
cancelling pressures (kb)”" (=10, typically, on a TLP in survival waves) times as large as the required non-
cancelling pressures. And they have a finer spatial dependence than first-order quantities. This is consistent
with the well-known requirement for much finer discretisations with second-order Stokes' expansion
compuations, than with first-order ones.

4)By contrast the slender-body theory uses the same simple well-conditioned parameter (2-D added
mass) at both first and second order. This is another striking illustration of the point stressed in Rainey (1989),
that a simpler flow model can be used, for the same level of accuracy (i.e. second-order) when surface-
pressure integration is avoided. The analogous case featured there is Taylor (1928), who required a lower-order
multipole expansion when he used an energy argument, than he did to obtain the same answer by surface
pressure integration. '
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DISCUSSION

M. McIVER: What is the size of the wavelength compared to the wave amplitude?
RAINEY: Arbitrary — the “wavy lid” described in Rainey (1989) can be shaped like a
breaking wave, for example. However, at a surface intersection the pressures across it

: 1 . :
will be large (due to the 5 pV2 dynamic pressure term) unless the waveheight is small

compared with the cylinder diameter. This restriction is discussed in Rainey (1989) p.
300, and applies to Stokes' expansion too, of course.

MILOH: Can you be kind enough and elaborate a bit more on why is (to your opinion)
the energy approach preferable to the commonly used momentum method, which
involve pressure integration, for the titled problem?

RAINEY: I believe the momentum method is harder going algebraically, because of
the need to consider the reactions at far boundaries (see e.g. Newman's “Marine
Hydrodynamics”, fig. 7.2), which do not vanish as the boundaries are made more
distant. Also, [ have never seen how the rate-of-change-of-energy-with-position term

(Ae/Ax in my 1989 JFM paper) comes out of a momentum argument, although
presumably it does somehow.

VAN DAALEN: In your 2nd sheet you showed the increase of angular momentum of
the fluid due to the propagation of the cylinder. My comment on this figure is that it
contains the basic concept of one of the eight conservation laws for a fluid with a free
surface including a floating body. The underlying theory has been treated extensively
by Benjamin and Olver (JFM 1982) for water waves only. Recently, I extended their
theory to water waves interacting with freely floating bodies. Besides energy, mass and
momentum, some other quantities are conserved as well for the coupled wave-body
system. One of these quantities is the total angular momentum with respect to a fixed
point, e.g. the center of mass of the system. The conservation laws and the proofs will
be presented in my Ph.D. thesis.

RAINEY: I look forward to seeing your Ph.D. thesis. There are interesting difficulties
with momentum arguments, as I indicated in reply to Prof. Miloh. To my knowledge,
general momentum arguments have hitherto been restricted to first order in
waveheight, see e.g. Newman's “Marine Hydrodynamics”, section 7.7.

FALTINSEN: You mention the TLP application. We found that the surge damping on
a TLP, for example, is only a potential flow effect (“wave drift” damping) in the
smaller waves. In survival waves, it is dominated by the contribution from viscous
drag. ‘

RA%NEY: Very interesting. Our experience is that the steady drift force on a TLP, and
the nonlinear tether tensions, are also strongly affected by viscous drag, in survival
waves. Perhaps this vindicates our simplified slender-body approach to potential f}ow
loads — its simplicity matches the modelling of viscous drag forces with a Morison

drag term.
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