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1 Introduction

According to Chan & Melville (1988), the presence of trapped air plays an essential role in
the plunging wave impact on a vertical wall. Thus, one expects the air pressure to be an
important scaling factor and that its cushioning effect cannot be neglected in the study of
water impact. A direct confirmation of trapped-air effects can, in principle, be obtained in a
decompressible wave tank by varying the atmospheric pressure, thus effectively changing the
scale of the air pocket effect. It is desirable, however, to obtain an estimate of these effects
by numerical simulations before such expensive experiments are attempted. The present
work concerns the numerical simulation of plunging wave impact on a vertical wall in the
presence of a trapped air pocket.

At the previous workshop (Tanizawa & Yue 1991), we presented the mathematical formula-
tion and numerical implementation for the simulation of wave impact in a two-dimensional
rectangular tank with a piston wavemaker at one end. Numerical results were shown for
the case without air. From those results, we concluded that the peak impact pressure, while
sensitive to numerical discretization, nevertheless resulted in an impulse small compared to
experimental measurements and to what one could expect from the effect of a trapped air
pocket.

Encouraged by this success, we extend the work to include the effects of an air cushion and
attempt a direct comparison to the measurements of Chan & Melville (1988). The basic
assumptions of the numerical model are that the fluid is homogeneous, inviscid and incom-
pressible, and that the flow is two-dimensional and irrotational and thus can be given by a
complex velocity potential 8. For the air pocket, the the process of air compression is as-
sumed to be uniform, adiabatic and described simply by a polytropic gas law: pv7=constant,
where p is the trapped-air pressure, v the trapped-air volume, and y=1.4 for air is the ratio
of specific heats. A mixed Eulerian-Lagrangian is used, and the boundary-value problem for
03 is solved at each time step using a boundary-integral method.

2 Numerical Results

Figure 1 shows a schematic of the numerical simulation in a two-dimensional tank.. F?r
simplicity, the problem is made dimensionless by setting the initial depth of the ﬁmd‘ in
the tank k, the fluid density p, and gravitational acceleration g all to umty. A plunging
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breaker is generated by an impulsively started constant forward motion (U=0.7) of the
piston wavemaker. The far wall is located at £=5.8. This wall is submerged to only half the
mean depth to allow a gap y € [—0.5, —1]. Inside this gap, an outflow boundary condition
is applied which allows the size of the air pocket to be effectively adjusted.

Figure 2 shows a sequence of the surface contours of a plunging breaker generated this way.
The last free-surface profile, indicated by a thickened line, is taken at the instant just after
impact at which time a small portion (much less than order of panel size) of the plunger tip
that crossed the wall is truncated. For the continuing simulation with the trapped air pocket,
a range of different initial air pressures, which defines the physical scale of the problem, is
considered: pgm = 1, 10 and 100. The development of the free surface subsequent to the
profiles in Figure 2 for ps;m= 1 and 100 are shown in figures 3 and 4 respectively.

Despite very small panel sizes (A ~ .01) in the impact region to maintain fine spatial
resolution, the free surface inside the plunger remains stable in all cases even in the expansion
phase of the air pocket in the p,tn =100 case. The simulated air pocket profiles are smooth
and appear realistic, with the effect of buoyancy clearly observable in the rising motion of
the trapped air. We remark that no numerical smoothing are required in the simulations. A
regridding scheme based on cubic-splines is used at each time step. Given the development of
the air pocket geometry, the time history of the air pressure in the pocket is easily obtained
under the assumptions of a polytropic gas law. |

The time history of the trapped-air pressure for different values of p,em are given in figure 5.
Of particular interest is the case of pyym= 100 where the bubble oscillation reaches a peak
air pressure amplitude of ~22 times the maximum hydrostatic pressure pgh. In this case,
the total peak impact force is F'/pgh® ~4.6 and the total impulse I/ph3,\/gh reaches a value
of ~0.1.

We now turn to comparisons between our numerical predictions and actual tank measure-
ments.

3 Comparison between simulation and experiments

To facilitate a direct comparison to measurements, it is necessary to first define a character-
istic velocity C for the plunging wave. In the experiments of Chan & Melville, the plunger
was generated by focussing a wave packet and C was taken to be the (linear) phase veloc-
ity of the central component. Corresponding approximately to this value, we take as the
characteristic velocity that at the plunging wave tip just before impact. From the numerical
simulation, this value is given by C' = 1.96.

Table 1 gives an order of magnitude comparison between the experimental values and the
numerical predictions based on the simulation case of patm = 100. Using the value of pasm=10°
N/m?, p=10% kg/m?®, and g=10 m/s?, we calculate a value of A ~ 10 cm, yielding an
initial air pocket dimension of ~3 cm. From figure 4 of Chan & Melville, we estimate
their corresponding bubble dimension to be ~1 cm. Thus our pstm = 100 case corresponds
approximately to the experimental scale.

Assuming this to be the case, the comparison between the predicted and measured peak
impact pressure is quite satisfactory. The computed peak air pressure of ~ 22pgh = 6pC?,
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while the measured impact pressures range from 6 ~ 10pC?. In view of the different sizes of
the air pocket, the agreement for the impact duration is also acceptable. The experimental
oscillation frequency in the impact pressure is reported to range from 0.3~5 kHz correspond-
ing to a impact duration of 1.5~0.1 ms. On the other hand, the computed impact duration
of 0.03 from figure 5 gives a physical value of 3 ms.

Further details of trapped-air impact with various scales as well as scaling laws accounting
for the air pocket will be discussed.
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Table 1. Comparison between measurements and simulation.

Experiments Computations
(Chan & Melville 1988) Patm=100pgh
Dimension of air pocket ~1cm ~ 3 cm
Maximum impact pressure 6~10 pC* 6pC*
Duration of impact pressure 0.1~1.5 ms 3 ms
y
A air pocket

Fig.1 Sketch of the simulation
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Fig.2 Free-surface profile of the simulated plunging wave.
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Fig.4 Free-surface profile of the simulated plunging wave impact.
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DISCUSSION

GREENHOW:
1) Cooker (Manchester Workshop) has shown that waves which impact on a wall

. : , )
before overturning can also give extremely high pressures due to the 5% term.

2) For initial jet impact, you may be able to use self similar flows, as in Cumberbatch
(1960 J. Fluid Mech.) and in Gurevich's book an jets and cavity flows.

TANIZAWA & YUE:

1) Cooker has shown the existence of high acceleration field at the root of the
upwashing flow. But its does not mean the existence of high pressure. Its only means
the existence of large pressure gradient. Since the scale of high acceleration field is very
small, the pressure itself is not so high.

2) We thank Dr.Greenhow for pointing out the references. The work by E.
Cumberbatch (JFM 1960), in particular, is most relevant to our simulation of the jet at
initial impact and may provide a useful “inner” solution to the problem.

BROEZE: With a potential flow model, the moment of first impact cannot be
modelled due to infinite pressure. During the first moments of impact, the pressure in
the jet at the wall is much larger than it becomes in the air pocket at larger times.
What is the use of these pressure computations with a potential flow method, if they
cannot provide the largest pressure impacts?

TANIZAWA & YUE: The peak impact pressure of the water impact is certainly higher
than that of the air impact. But, the water impact pressure acts on much smaller area
compared with the trapped air pressure. And its duration is also much shorter than
the air impact duration. In consequence, total impulse of the air impact pressure
becomes larger than that of water impact. We consider that the total impulse is more
important for the design of ocean structures.

SCHULTZ: Since the transition from stage 1 to stage 2 violates the continuous
mapping, what model do you use for the transition and how does it affect the results?
TANIZAWA & YUE: We perform a truncation as soon as the first Lagrangian point
crosses the wall in the time integration. Since our time steps are dynamically

controlled so that a Lagrangian point can move only a small fraction (typically a =
10%) of the smallest panel size, the truncated volume, fluid momentum etc. are scaled
by (a small fraction of) the panel size. For global spatial and temporal behavior, we are

able to obtain convergence with diminishing «. The convergence of our results for the
spatial and temporal limiting peak pressure at the point of impact is, of course, a
different matter and is a subject of current investigation.

CAO: Can you explain how the outflow boundary condition inside the gap between
the wall bottom and the bottom of the tank adjusts the size of the air pocket? What
kind of outflow boundary condition do you use? Can the outflow condition you use
easily be controlled in an experiment?
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DISCUSSION

TANIZAWA & YUE: The “outflow” on the bottom half of the wall is controlled by
specifying a given flux rate (in fact the stream function variation in a Cauchy integral
formulation). This is done to allow us to range the air pocket size without resorting to
much long tank and more complicated wave maker motion. In later simulations and
experiments, a ‘full’ tank and composite wave maker motions (e.g. Chan & Melville,
1989) will/can be used to develop the desired plunging wave.
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