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1 Introduction

The reflection of surface waves by patches of bottom undulations has been extensively studied
recently, owing to its importance in the development of shore-parallel bars. A straightforward
perturbation analysis shows that large resonant reflection occurs under a Bragg condition
(Davies 1982), namely when the bottom undulation has a wavelength half that of the incident
waves. Laboratory experiments of Davies & Heathershaw (1984) confirm this prediction and
suggest a possible practical application of this mechanism for the protection of beaches.
For mild incident wave and bottom slopes, reflection at or near Bragg resonance is well
predicted by perturbation theory based on multiple scales and the assumption of linearized
surface waves (Mei 1985)

For moderate to large wave and/or bottom steepnesses, it is generally expected that higher-
order Bragg resonance must also occur due to nonlinear interactions between thé surface
waves and bottom undulations. For a bottom containing unidirectional doubly-sinusoidal rip-
ples, significant Bragg reflection corresponding to differences of the bottom ripple wavenum-
bers is observed in experiments even for small undulation amplitudes (Guazzelli et al 1992).
This nonlinear resonant reflection can be comparable in magnitude (although not at the
same frequency) to that due to linear Bragg effect. Since this phenomenon is a result of
higher-order Bragg interactions, it cannot be predicted by the theory of Mei (1985).

In this work, we investigate nonlinear Bragg reflection of waves travelling over undulating
bottom topography using an efficient new computational method. The method employs
spectral (global) basis functions and numerically accounts for arbitrarily high order expan-
sions in both the free surface steepness and bottom slope. For moderately steep slopes, the
method obtains exponential convergence of the solution with both the number of spectral
modes and the order of the expansions. Significantly, with the use of fast transform tech-
niques, the computational burden is only linearly proportional to the number of modes and
to the free surface and bottom perturbation orders. This powerful method is used to accu-
rately predict resonant Bragg reflection by bottom undulations including high-order effects
of the free surface and bottom.
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2 Formulation

We consider surface wave propagation over a rippled bottom z = —h + ( (z) with constant
mean water depth h. Under the usual assumption of potential flow, the boundary-value

problem for the velocity potential ®(z, z,t) consists of Laplace’s equation within the fluid,
no flux condition on the bottom,

8, = (8., o z=-h+((e), (1)

and nonlinear kinematic and dynamic boundary conditions on the free surface. For initial
conditions, the free surface elevation n(z,0) and velocity potential &(z, z,0) are prescribed.

In terms of the surface potential #5(z,t) = &(z,7(z,t),t), we can write the free surface
boundary conditions in Zakharov form as:

e+ 859, — (14 72)8.(z,n,t) =0, and (2)
1 1
& + 91+ 5(22)" - 5(1+ )8 (=, mt) =0, (3)

where g is the gravitational acceleration. In practice, these nonlinear equations can be
considered as evolution equations for 7 and &5, provided that the surface vertical velocity
®.(z,7,t) can be obtained from the boundary-value problem.

The present approach was first suggested by Dommermuth & Yue (1987). We consider

regular perturbation expansions in both the bottom undulation ({(z)) and the instantaneous
free surface (n(z,t)) simultaneously. For simplicity (and without loss of generality), we

assume that ¢ < 1 measures both the bottom and free-surface wave slopes. Our intention is

to solve the problem (in the time domain) to arbitrary high order M in ¢ and we write @ in

a perturbation series to order M:

M
¥(z,z,t) = Y 8™)(z,z,t). (4)

ma=1

To obtain the free-surface and bottom boundary conditions for each (™) in (4), we expand
(1) and @° in separate Taylor series with respect to the mean surfaces z = —h and 0 respec-
tively. Collecting terms at the respective orders, we finally obtain a sequence of Neumann
boundary conditions on z = —h:

(Pg)(:c, —h,t) =0,

= [£ 84D gem-n | '
™)z, —h,t) = Y Faz(l-l)(}zm' (z,~h,t)] , m=23,...,M; (5)
(=1 ¢ z
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and a sequence of Dirichlet boundaty condition on z = 0:

$()(z,0,t) = ¥*,
m—‘ ’7‘ 3[

> 7322 0=01), m=23,...M. (6)

Q(m)(z, 0,t)=—

At each order m, (™) satisfies Laplace’s equation in the mean fluid domain —h < z < 0,
the Neumann boundary condition (5) on z = —h, and the Dirichlet boundary condition (6)
on z = 0. In a spectral approach, we represent #(™) in terms of global basis functions which
satisfy the field equation and the homogenous surface and bottom conditions. To accomplish
this we write ®(™) = a(™) 4 (™) where

(m) _ eo‘ (m) cOSh[Ik,.l(Z“}‘h)] skaz

¢ (:c,z,t)—“aan ®) cosh(|kx |h) et tee, (7)
(m) _ g, 5 gty Smh(Ealz) i |
et = B zﬁ-n=1ﬂ" (t)lkn|cosh(|kn|h)ekﬁ e ®)

In the above, k, is the wavenumber, c.c. denotes complex conjugate of the preceding term,
and a 27-periodic computational domain in z is assumed. Clearly, for smooth (periodic)
$(™), the amplitudes of the orthogdnal spectral modes a{™ and B{™ decay exponentially
with increasing wavenumber k,. At each order m, al™ and B{™) are determined by taking
the inner product of e** with (6) and (5) respectively and the nonlinear boundary-value
problem is solved sequentially for m = 1,2,..., M. The overall problem is integrated in time
via (2) and (3) starting from initial conditions. .

3 Results and Discussions

To illustrate the efficacy of the present method, we first consider a single wave propagating
over a horizontal bottom with uniformly sinusoidal ripples. This simple case has been well-
studied both theoretically and experimentally. Nonlinear results near the Bragg resonance
are obtained and compared to experiments (Davies & Heathershaw 1984), perturbation
theory (Mei 1985), and the boundary-integral-equation numerical solution of Dalrymple &
Kirby (1986). As an extension, we investigate the case of a doubly sinusoidal bed and obtain
the subharmonic resonant reflection coefficient which we compare to the measurements of

Guazzelli et al (1992).

Finally, for a bottom containing disordered ripples, localization of surface waves has been
predicted by theory (Devillard et al 1988) and observed in experiments (Belzous et al 1988).
The present efficient method is able to accurately simulate this localization phe iomenon and
provide a verification for the physical experiments.
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