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1 Introduction

The reduction of linear wave-body interaction problems to integral equations over the surface of
the body is a commonplace. However, it is also well known that the standard integral equations
are degenerate when the body is thin (see, e.g. Warham (1988) or Martinez (1991)). This
degeneration is discussed and two methods for its elimination are described. '

2 Formulation

We start with a fundamental solution (in three dimensions),

G(P,Q) = -1/(27R) + G:(P,Q)

where R is the distance between the two points P and Q. G is harmonic and bounded in the
water, and is chosen so that G satisfies the free-surface and radiation conditions; the simplest
choice for G, is

-1 [*k+ K -
Gi(P,Q) = Gi(z, 1 56m,0) = 57 [ T Jolkp) ek,

where y = 0 is the free surface and y points down, K = w?/g, p? = (z - £€)* + (2 ~ ¢)? and
the integration contour is indented below the pole of the integrand at ¥ = K. Then, for a
direct method, one uses Green’s theorem to obtain various boundary integral equations for the
boundary values of the potential ¢.

To fix ideas, let us consider a scattering problem for a (fixed) body with wetted surface S.
Let #'™ be the incident potential, let ¢ be the scattered potential, and let

6= ¢in + ¢sc
be the total potential, satisfying s
yqﬁ =0 on S,
n

where we take the unit normal on S, n, pointing into the water. Then, we have
0
26(P) = - [ ¢la)g—G(P.a)ds,, (2.1)
s ng

giving the scattered field at any point P in the water in terms of the boundary values of the
total potential, ¢(g). Letting P go to pon S gives the familiar integral equation,

80)+ | 80150 Glr.0)dsy = 26°().

This is a Fredholm integral equation of the second kind with a weakly-singular kernel; we write
it concisely as

(I + K)p = 2¢™. (2.2)
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3 Burton and Miller

If the body pierces the free surface, the integral equation (2.2) will suffer from zrregdlar fre'-
quencies. One way to eliminate these is to adapt the method used by Burton & Miller (1971)
in acoustics. Thus, evaluate the normal derivative of ¢* on §, using (2.1), to give

5 L HO)5Gp0) sy = 267).

where v'® = 9¢'"/dn; write this hypersingular integral equation as
N¢ = 2™, (3.1)
Then, Burton and Miller’s method consists of solving a linear combination of (2.2) and (3.1),
(I 4+ K + aN)¢ = 2(¢™ + av'™), (3.2)

where the coupling parameter « is usually taken as a = ivy, with 7 real and non-zero. For water
waves, this method has been investigated by Lee & Sclavounos (1989). We shall return to (3.2),
the BM equation, later.

4 Thin bodies

Consider a submerged pancake of (small) nominal thickness h. Let S, (S_) be ‘the ‘upper’
(‘lower’) piece of S, so that § = S, U S_, and write p and ¢4 for points on Sy (see Figure 1).
Define

Koy = / ¢>(q+) FGprogr)ds)  and  K_g. = /¢<q-> =Glp-,-)ds;

where o+ = ¢(qs), ds is the surface element at g4+ and 3/(’)11=t denotes normal differentiation
at ¢* into the water. In the integral operators K4, both the field point p4 and the source
point g4 are on the same surface, namely Si. We also need similar operators in which the field
point and source point are on different surfaces: define

KEyou = [ 00Ol st and KD6o= [ ola)gl=Glpna-)dsy,
+ g

where the superscript h reminds us that the two surfaces are separated by a distance h. With
all this notation, we can rewrite the integral equation (2.2) as

(I+Ky)pe + Kh_o_ = 2¢' on S,
» (4.1)
Ki,ppy+(I+K_)p_- = 2¢™ onS_.
n

Figure 1: The submerged pancake, with surface partitioned as § = S, U S_.
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Now, what happens as h — 0, so that S, and S_ collapse on to the same surface, S, say?
Clearly,

K_¢_ > ~Ki¢_
since n{g4) = —n(g-). Also, using the jump relations, we find that
K¢y > 61+ Kedy  and Kb ¢ -9+ K_¢_=¢_ - Ked-.
So, in this limit, (4.1) becomes
(I+K4)ps + (I - Ki)p- = 248 on S,

(4.2)

(I+ K4)o4 + (I - Ky)o- 24 on S_.

However, ¢'" is blissfully unaware of the pancake’s presence, so we have ¢i_{,‘ = ¢ in the limit,
whence the pair of equations (4.2) degenerates into just one equation, namely

(0) + K4[8] = 2¢™, (4.3)

where (4) = ¢4 + ¢_ and [¢] = ¢4 — ¢_. Thus, we obtain one equation for two unknowns.
We can make a similar analysis for the hypersingular equation (3.1), rewriting it as the pair

Niopy + Ni_¢_ = 20" on Sy
| (44)
Nf+¢+ +N_¢p-. = 2v"™® onS_,
where ;
' 6
N+¢+=—-/ ¢(q+ G(p+,q+)ds N_¢_ = / #(q- )a =G(p-,9-)ds;,
Moo = gz [ Mo gar GO dst, Nioo =5 [ 8005 Glorn0-) by
As h — 0, we ﬁnd that N_ — Ny, N_+ ~N; and N+_ — —Ny; since vi‘ = —v™ in this
limit, we find that the pair (4.4) degenerates into a single equation for [¢], namely
Ny[¢] = 20 (4.5)

This is precisely the hypersingular integral equation for thin plates, discussed at previous Work-
shops; see Parsons & Martin (1992).

5 Non-degenerate equations for thin bodies

We describe two non-degenerate methods.

5.1 Mixed system
Solve the pair of equations obtained by combining the first of (4.1) with the second of (4.4),

(I+ K)pe + K26 = 2¢'0 on S,
' _ (5.1)
Nﬁ+¢+ +N_¢_-. = 2v™ on S..

This pair is uniquely solvable for all A > 0; as A — 0, it reduces directly to (4.3) and (4.5).
If the body pierces the free surface, (5.1) has irregular frequencies (which are identifiable as
the eigenvalues of a certain interior problem). Numerical experiments with the pair (5.1) in
acoustics have been described by Krishnasamy et al. (1993). We remark that (5.1) can be
viewed as a pair of dual integral equations (see, for example, Sneddon (1966)).
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5.2 Burton and Miller

Consider the BM equation, (3.2). Partitioning S as before gives

(I+ Ky +aNy)py + (KE_+aNb Yoo = 2(4P+avi") on S,
v . (5.2)
(K, +aN Yoo+ (I+ K-+ aN_Yp- = 2(¢+av™) on S_.
Letting h — 0, as before, these reduce to
(I + I(.}. + QN+)¢+ + (1 - K+ - 0N+)¢_ = 2(¢:_1 + avf,{‘) on S+
' (5.3)

(I+Ky—aNy)py +(I - Ky +aNp)p- = 2(¢™ —avil) on S_.

The sum of these two equations gives twice (4.3) whereas the difference gives (4.5) multiplied
by 2a. Hence, the BM equation is not degenerate for thin bodies provided that a # 0.

We observe that solving (3.2) requires about twice as much work as solving the mixed
system (5.1). On the other hand, (3.2) does not have any irregular frequencies when the body
is floating and it does not require a partitioning of the wetted surface.
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