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1 Introduction

The subject of this paper is a pseudo-arclength continuation method for computing non-linear three-
dimensional steady potential flow around a submerged body moving in a infinitely deep liquid at constant
speed and distance below the free surface. Most numerical techniques for this problem are based on direct
application of Newton’s method to find the non-linear solution, [3]. Usually, these iterative methods use
the solution of the double-body problem or the Kelvin—-Helmholtz problem as initial guess. However,
it is well known that Newton’s method will only converge if the initial guess is sufficiently close to the
solution of the non-linear problem. Hence, it is not surprising that severe convergence problems have
been accounted with these methods.

In the present approach we instead embed the full non-linear problem in a sequence of problems such
that one value of the embedding parameter corresponds to the Kelvin-Helmholtz problem, and another
yields the full non-linear problem. The solution of the full non-linear problem is approached by gradually
changing the value of the embedding parameter, and using the solution at the previous value as initial
guess in the iterative Newton procedure. This is a well known technique for solving general non-linear
problems (2] and it has for example been used to compute two-dimensional periodic water waves [1], [4].
However, it has apparently not been applied to the present problem before.

"To describe the method in more detail, we introduce the following notation. Let the speed of the body
be U, the acceleration of gravity be g, the velocity potential be ¢ and the elevation of the free surface
be n. We describe the motion in Cartesian coordinates which are fixed with respect to the body. The
z-axis points opposite to the forward direction, the z-axis is directed vertically upwards, and the y-axis
is directed sidewise such that (z,y, z) forms a right-handed coordinate system. We embed the solution
in a parameter, 0 < a < 1, such that @ = 0 yields the Kelvin-Helmholtz problem and a = 1 corresponds
to the full non-linear problem.

The velocity potential is governed by V3¢ = 0 in the interior and is subject to the following boundary
conditions:

(1-)U(g = U)+a(IV4]* - U?) /2+gn = 0, (1)
(1 - a)U‘r],, + a(¢=’l= + ¢vﬂy) —-¢; =0, ' (2)

Il

on z = an(z,y). On the body, we impose ¢, = 0, and at infinity we require the potential to satisfy
(¢2, by, ¢:) = (U,0,0). We also require the radiation condition to be fulfilled, i.c. no waves should be
presen” ahead of the body. ,

‘The potential in the interior is uniquely determined by its values on the boundary. It is therefore
sufficient to consider the above equations as a problem for the boundary values of ¢ together with the
surface elevation. Furthermore, the surface elevation can be eliminated between the boundary conditions
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on the free su}'face. Therefore, the solution is completely characterized by the values of ¢ on the boundary.
Below, we will use the abstract notation L(¢,a) = 0 for this non-linear partial differential equation
together with the boundary conditions.

2 Pseudo-arclength continuation

Following [2], the solution will be considered as a function of the pseudo-arclength s, ¢ = ¢(s) and
@ = afs). Assume that a solution point (o, ag) is known, and let it have pseudo-arclength 30. We define
the pseudo-arclength relative to that point by

3 = 30 + (Po,  — do) + Go(a — o), (3)
where (-,-) is the L; scalar product. The tangent (éo,do) is the solution of
Ly[¢0, ao]do = —Lalpo, ao]do, (4)

subject to the normalization ($o, dao) + &2 = 1. The direction of the tangent is determined by requiring
the scalar product between the previous and the present tangent to be positive.
We augment L[¢, a] = 0 by the arclength equation N[¢, a; s] = 0, where
N($, ;5] = (fo, ¢ — o) + G — @) — (3 — 0)- (8)

We use the predictor (¢°,a%) = (do0 + ci;oAs, ao + doAs) as initial guess for the solution at s = sg + As.
The predictor is corrected by Newton’s method on the augmented system, where the improvements of
the solution are found by solving '

Ly[¢*,a*] La[g*,a*) \ [ a¢* | _ [ Ligtat] (6)
Nyg*,a*] Na[¢h,e*] ) \ Aak |\ Nigta|
The solution is then updated according to
¢k+1

o* + Ag*, : (7)
aftl = o 4+ Aok, (8)

The iteration is truncated when ||¢*+? — ¢*|| + |a*t! — a®| < e.

If the iteration converges, we repeat the procedure until o = 1 is reached. The number of iterations
that was required to get convergence is used to determine next step-size As. However, if the iteration
diverges, we halve the step-size and try again. By the implicit function theorem, the iteration must
converge for a sufficiently small step-size if the Jacobian Lg[@o, o] is non-singular. A singular Jacobian
corresponds to a turning point or a bifurcation point. The method can be extended to handle these cases
as well, but we refer to [2] for details.

3 The numerical method

We represent the velocity potential in terms of a single layer distribution,

a(Q)
o(P) = ds(Q)+Us=. 9

Here, P = (z,y,2), @ = (%,§,Z) and |P— Q| is the distance between P and Q. This integral is discretized
by first truncating the infinite domain to a finite domain and then applying a panel method where o is
approximated to vary linearly over each panel. We get the discrete counterpart of L(¢, a) by enforcing
the boundary conditions at the free surface and at the body to be satisfied at a finite number of control
points.

The work described here is still in progress and we have not yet completed the implementation of the
method. Therefore, no numerical examples are presently available. However, we anticipate to be able to
show non-trivial numerical examples during the workshop.
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