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1. INTRODUCTION

Many structures exposed to water wave action possess a rectangular cross-section. Ships, docks,
caissons, as well as some breakwaters, belong to this group. Linear diffraction and radiation problems for
such structures have been solved by applying various methods. Some second-order numerical solutions have
also been published for a semi-submerged horizontal rectangular cylinder. However, most attention has
focused on the mean force.

Numerical methods are recognized tools to deal with nonlinear diffraction or radiation problems.
The necessity of verification of the numerical solutions, several inconsistent theoretical approaches in the
published literature, and many more reasons create the need of developing other methods of solution to the
nonlinear problems. Application of such a method e. g. the method of matched eigenfunction expansions
at second order is one of the purposes of the present paper. The additional purpose, however, is to present
and further discuss the author’s theoretical result cited by Johansson (1989), which shows that the second-
order components may, in deep watcr, become significant contributions to the loads. This conclusion has
been derived for a semi-submerged horizontal rectangular cylinder. Results of a simplified theoretical
approach for the calculation of the second-order vertical force acting on the horizontal rectangular cylinder
by Newman (1990) and an approximate solution to the second-order boundary-value problem for a
horizontal rectangular cylinder of substantial draft by Sulisz and Johansson (1992) confirm this conclusion.

2. THEORETICAL FORMULATION

A floating horizontal cylinder of rectangular cross-section, shown schematically in Figure 1, is
considered. It is assumed that the excitation is provided by normally incident plane waves of small
amplitude A, and frequency w, and that the velocity has a potential.
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The velocity potential ,® at first (n=1) and second order (»=2) can be calculated from
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B(, 2,0 = Re[ Y e | 8=0135 n=12, (1)
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where ,¢,(x,2) is the spatial velocity potential associated with 8 mode of motion, and i=V/-1.

The method of matched eigenfunction expansions is applied to obtain a solution. In order to use
this method, three subdomains R, / = 1,2,3, are distinguished, and the spatial velocity potential e | =
1,2,3 is introduced so that: ,¢,=,¢; for (x, z) ¢ R, The solution proceeds by taking eigenfunction
expansions of the spatial velocity potential ,¢, in each of the three subdomains and matching them at

x| =b. Equality of potentials and equality of their horizontal derivatives at |x|=b, -h < 7 < -d are
imposed as matching conditions.

An interesting feature in the solution was the development of significant second-order loads on a
cylinder due to diffraction potential. This feature requires further investigation, so our attention from here
on is focused on the diffraction potential ,¢y,.

The first-order solution, 1¢q, { = 1,2,3, may be written in the following form
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where Ry, and T, are the amplitudes of the first-order reflected and transmitted wave,respectively, R,,,, and
Tim, m = 2,3,..., are the amplitudes of the first-order evanescent modes, C,, and D,,, m = 1,2,.
the coefficients determmmg the ﬁrst-order potential in the subdomain R,, and a,,, = {-ik,, o, a,;,
ky , oy, ... > 0}

The ﬁrst-order solution satisfies all of the boundary conditions except the matching conditions at first
order. In order to satisfy the matching conditions and determine the unknown coefficients of the
eigenfunction expansions, a matching procedure based on the method of matched eigenfunction expansions
is applied. The procedure requires truncation of the eigenfunction expansions at some finite value m=M
and leads to a set of simultaneous equations whose solution determines the coefficients of the eigenfunction
expansions. The first order solution usually provides satisfactory results for M <20.

The second-order solution, ,¢,, , I = 1,2,3, may be written in the follcwing form
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where R,; and T, are the amplitude of the second-order reflected and transmitted wave, respectively, Ry
and T, j = 2,3,..., are the amplitudes of the second-order evanescent modes, C; and Dy, j = 1,2,..., are
the coefficients determining the second-order potential in the subdomain R,, and ay; = {-ik,, 0, a0z,
ky , ay, ... > 0}

The second-order solution, (3a) and (3c), consists of two main parts. The first part is associated with
summation over j and satisfies the homogeneous form of the combined free-surface boundary condition,
while the second part satisfies the nonhomogeneous form of the combined free-surface boundary condition.
The first part in each equation consists of a propagating free-wave (j=1) and evanescent components
(/> 1). The second part is a result of wave-wave, wave-evanescent mode, and evanescent mode-evanescent
mode interactions.

The second-order solution satisfies all of the boundary conditions except the matching conditions at
second order. The matching conditions are satisfied by applying the method of matched eigenfunction
expansions. The method at second order requires truncation of the eigenfuncticn expansions at j=J. An
analysis of the arguments of the cosine functions in (3) indicates that J = 2M - 1. Further calculations
show that J = 2M - 1 is sufficient, however, the second-order solution requires M > 20 for waves of
intermediate lengths.

The method of matched eigenfunction expansions can be applied to obtain the coefficient in (2) and (3)
for various configurations. However, for a cylinder of substantial draft these coefficients can be obtained
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analytically, so an analytical solution up to second-order
is also made available.

4. RESULTS

The solution obtained in the preceding Section has
been used to calculate time-dependent components of
pressure and loads.

Figures (2) show the modulus of pressure along the
base of the cylinder (b/h=0.7625, d/h=0.75). The first-
order pressure component (,p) and the second-order
pressure component (yp) are presented for two
dimensionless wave numbers. The presented theoretical
results are obtained from the analytical solution.

The second-order components of pressure may
become the dominant contributions to the loads in deep
water. This is i]lustrated in Figures (3) where the ratio
of the amplitude of the second-order component of the
vertical force to the amplitude of the corresponding first-
order quantity is plotted versus wave steepness (Aok,/).
Experimental data in Fig. (3a) (b/h=0.4, d/h=0.2,
ksh=4.11) and in Fig. (3b) (b/h=0.7625, d/h=0.75,
k,h=3) confirms theoretical results.

Significant second-order load components have
their origin in a relatively large second-order pressure
component that occurs on the periphery of a cylinder.
Figure (4) shows time series (I’ = 2x/w) of the pressure
underneath a cylinder (x/b=-0.931; configuration as in
Fig. 3b)) calculated by the method of matched
eigenfunction expansions and measured in the wave
flume. The iheoretical pressure in Fig. (4) represents a
sum of the first- and second-order time-dependent
pressure components. The large second-order component
in the time series is clearly visible even though the
cylinder is exposed to waves of moderate steepnesses.
(Aoky/7=0.034).
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