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Introduction

Rainey’s second order consistent Slender Body theory introduces additional terms to Morison’s
equation. This paper derives the forces which act on a vertical, moving, non-rotating cylinder such
as a TLP or GBS column and reformulates the “axial divergence correction’. A slender body model
for TLP ringing is presented and shown to produce good agreement with the ringing observed in
model tests in spite of a number of approximations.

1. Slender Body Theory

The Slender Body equations for a constant section vertical column with zero angular accelerations,
lying in the x-z plane, subject to plane waves are derived to illustrate the features important for TLPs.
The notation conforms to refs.1 & 2. Note that these equations only apply to a uniform cylinder;
additional terms are required to describe forces on a tapering or flaring member and may be derived
from the equations for a complete structure (ref.1).

1.1 The vector lateral load per unit length is, ignoring rotational terms:
F, = pcla-g]l; + Mla + (1.VD)w - du/dt}(1)

Subscript T denotes resolution in the transverse direction and 1={0 0 1}’, w={[w, 0 w,]’. Here p is
the water density, ¢ is the cylinder cross sectional area, a is the vector fluid acceleration, g is the
vector acceleration due to gravity. Relative velocity is w while the velocity of the structural cross
section is denoted by u. M is the 2D added mass per unit length matrix with diagonal elements [ M,,
M,, 0]. Note that the axial added mass is taken to be zero since the body is *slender’.

Other than the ML.VI term, F,;, known as the Axial Divergence (AD) term, F, is exactly the same
as the inertial term of the Morison equation. Integration of the conventional’ Morison terms in (1)
to a moving free surface will produce double frequency forces (changing added mass) and moments
M,, with second and third harmonic terms (changing moment arm).

The AD term can be simplified and reformulated in a more physically appealing way. V is the fluid
velocity gradient matrix so V; = dv/dx;.

Hence VI = [dv,/0z dv,/0z dv,/9z] and LVI = dv,/0z

Then F,, = M(1.Vhw = M.dv,/oz.[w, 0 w,] = [M,.w,.dv,/z 0 0] )

Laplace’s equation in 2D shows that dv,/dz = -dv,/dx. Substitute w, = v, - u, (u, = cylinder vel.):
Fu = -Mdv/ox.(v,-u) = -0/0x( aM,.(v, - u)?)

Thus the AD term is due to the work done in accelerating the fluid as the structure moves through

the velocity field at constant speed. It may corrupt some measurements of drag coefficient C, in

spatially non-uniform flows. The AD term is the spatial part of the conventional added mass term.

The double frequency AD term can produce a third harmonic moment M,, if integrated to a moving

free surface. The value is crucially dependent on the wave kinematics near the free surface where the
velocity gradient is high. Its pitch moment is largest on deep draft TLPs.
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1.2 The slender body free surface ’slam’ load F,, is due to rate of change of added mass:

Fi = 2 tanB[(t. w)Mw - (t.(1"Mw))(1"w)] 3)
The second term is zero in this case since the fluid flow and the column lie in the same plane.
t.0"Mw) = .(10 0 1)*[M,.w, 0 M,.w,]) = [1 00}.[ 0 M,.w, 0] = 0
The first term simplifies as:
(t.w)Mw = ([100].[w, O w, D[M,.w, 00) = [M,.w,2 0 0]
Hence F, = [ tanO.M, . w2 0 0]
This is third order in wave elevation since tan O is the wave slope = ka. However, in the very steep
waves under consideration, it is not necessarily third order in kinematics and is retained. This ’slam’ "
term can produce third harmonic lateral forces and hence a fourth harmonic moment M,, about the
centre of inertia z.. It may not be accurate when a sharp crest passes a large diameter cylinder and
surface curvature is important.

M, = % tanO.M, .w2.(h - z)
1.3 The load at the immersed end is:

F; = (Y2 w.Mw - ¢p)l - (I.Lw)Mw
= M,.w,2 - ¢p)l - w,[M,.w, 0 0] = [-M,.w,.w, 0 “£.M,. w2 -cp]

where p is the total pressure in the incident wave and c¢ is the cylinder cross sectional area.
The lateral force is a simple rate of change of added mass term and appears only at immersed ends
where fluid is being accelerated, not so at the free surface. It is not clear why the axial force is
included while axial added mass forces are not. In this application, the end force is negligible.
2. Pitch moments due to the slender body forces
Pitch/roll is the major contribution to ringing on a deep draft TLP. The pitch (along-wave tilt)
response is much more non-linear than cross wave or heave motions. Pitch moments are calculated
about the centre of inertia which decouples surge and pitch (the rotation centre for ringing), at

Z = M.V + Mis(@))/(M + M, (@)
The pitch exciting moment signal can be constructed approximately from experimental wave data,
using Airy wave theory to Wheeler destretch’ the measured free surface motion into the fluid
vertically below the measurement point. More accurate methods are desirable but the results presented

here are a major improvement on those previously available.

Fluid kinematics are derived in the frequency domain, but for an iterative estimate of slope and v,.
A cutoff frequency of 0.4Hz is imposed to ensure convergence.

v,‘(t,z)k= IFFT(e*.«.FFT(h)) a(t,z) = IFFT(e=.jw?.FFT(h))
Loop: O@®)=a (t;,0)/(g - a,(t,0)) v,(t,0) = dh/dt + ©.v,(t,0)

3,(t,0) = IFFT(jw.FFT(v,(t,0)) end
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Then v,(t,z) = IFFT(e=.FFT(v,(t,0))) 3,(t,z) = IFFT(e".jw.FFT(v,(t,0))
9v,(t,2)/0z = IFFT(k.¢=.FFT(v,(t,0)))

For numerical stability, the first kinematic point is evaluated 0.Im below the surface. All
kinematics/forces are evaluated at fixed distances below the instantaneous free surface and forces are
integrated over the instantaneous z coordinates. Platform motion contributions appear relatively
insignificant but are included using measured first order velocity and acceleration.

The response of the structure is evaluated by FFT of the moment, multiplied by the transfer function
of the pitch mode G(jw) = 1/I,/(-w*+2cw,jw+w,?). Hence P(t)= IFFT(G(jw).FFT(M()). All this
analysis is implemented in PC-386 Matlab.

3. Results

Figures 1a,b shows the "Morison to free surface’ (filtered T < 5s), axial divergence and free surface
moments My, M., My, with the driving wave, h, shifted for clarity. All values relate to a single
column. Figure 2 shows the corresponding responses in the pitch mode. The AD and free surface
terms are significant so shallow draft TLPs ring less as z_ is close to zero. It is also consistent with
the experimental observation that raising the CG and hence the centre of inertia z., decreases ringing.

Figure 3 shows the measured pitch angles (upper curve) and model response with the moments time
shifted, according to the relative displacement of the columns, to represent those acting in 45° waves;
the wave is assumed non-dispersive which is reasonable given its high speed (T , = 18.4).

M; = M(t-7) + 2 M(t) + M(t+7)
The results are sensitive to the lag 7 since 1.6s, a typical lag, is half a pitch natural period.
4, Conclusions

In spite of major approximations (no wave diffraction or dispersion, linear destretching), the model
performs well and gives significant insight into the ringing problem for the first time. The axial
divergence force appears to be a major contributor to ringing and the pitch moment depends on the
depth of the centre of inertia. Response is very dependent on the wave speed and direction which
determines the sum of excitation from individual columns. A better model of large wave kinematics
is desirable and ultimately time domain fully nonlinear diffraction codes will be required. The model
also gives a relatively simply diagnostic (8.v,2 or h.a,) for waves likely to cause ringing and hence
a means to compare sea and model tank waves for their realism.
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Discussion:

Newman: If you had done a similar statistical analysis based on a different third order hydrodynamic
model, might you have found similar results?

Jefferys: A variety of third order parameters predict the occurrence of ringing events but not their
size. Hilbert envelope x wave height has been used by C.T. Stansberg for this purpose. Fig.1a shows
that the Morison to free surface (leading term h2.a,) is in phase with the slam term ©.w,? (necessarily
so in an Airy wave) and also the axial divergence term. However, wave height cubed is not a good
predictor of ringing as large waves do not always cause ringing events. It is also worth noting the fair
quantitative agreement between the predictions of the Slender Body model and the measured
responses.

Grilli: Although the waves are ’long’, the video shown indicates that waves are steep and highly non-
linear. Hence linear ’low order’ wave theory may not be adequate to predict the kinematics,
particularly in the crest region far above MWL, so the ringing loads may be poorly predicted. Of
course I would favour the development of a fully nonlinear 3D diffraction mode! but this is a long
term goal. In the meantime, a correction of the wave kinematics could be used to account for
nonlinear effects, particularly in the crest. The method suggested by Sobey (1991), who analysed high
wave kinematics in shallow water by higher order theory and experiment could be used here.

Jefferys: While the iterative method outlined in the paper produces consistent free surface slope,
velocity and acceleration values which satisfy the non-linear free surface kinematic condition, the
Wheeler destretching’ method of calculating kinematic values in the fluid leaves a lot to be desired.
Additionally, the ’linear’ approach to calculation of x velocity and acceleration probably
underestimates these values. I fully support your suggestion of a more accurate approach, since this
would improve both the evaluation of the local kinematics and of the kinematic quantities up and
downstream of the wave probe which is sited near the mid-columns. The active Norwegian JIP on
ringing is working on a better kinematic model and we will ensure that Sobey’s work is reviewed and
incorporated into a recommended practice if appropriate.

Reference: Sobey, R.J., A local Fourier approximation method for irregular wave kinematics’,
Applied Ocean Research, 14 (1992), pp93-105.
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