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Ocean structures are often working in an environment of both waves and current. Usually, the
velocity of current, i.e. U, is quite small compared to the phase velocity of the incident waves. The
amplitude of the incident wave is assumed to be small compared to the wave length. Therefore terms
of order O( UZ)(or higher) and nonlinear in wave amplitude are dropped in the present work. The
viscous effect is also neglected. The fluid is incompressible and the flow is irrotational so that there
exists a velocity potential. After establishing the boundary value problem for the velocity potential,
we focus on the calculation of hydrodynamic forces and verification of reciprocal relations between
these terms . It turns out that the wave exciting forces to the order of (U) can be evaluated by the
potentials without curren, which is an extension of the results obtained by Wu & Eatock-Taylor
(1990) for added mass and damping coefficients.

1. Formulation of the problem
The problem to be considered is that some bodies are floating in a water of depth 4. In

addition to a uniform current with velocity U, there comes a plane wave with a frequency of @) The
bodies are restrained from the drift motions but are free to linear oscillation at encountering frequency

. As an extension of the previous work(Bao & Kinoshita, 1994) in which only diffraction problem
was considered, the radiation problem will be included in the present work. A right-handed
coordinate system is adopted. The plane z=0 coincides with the still water free surface and z-axis is
positive upwards. The x-axis points against the uniform flow so that the current is moving in the
negetive x direction.

The potential @1 is decomposed into a uniform flow, a steady disturbance potential ¢ and an

unsteady potential. The unsteady potential is in turn separated into diffraction potential and radiation
potentials, 1. e.

— 6
D(x,1) = -Ux+U§(x)+Re {[ 0, Eix)+ %@;(x)]e- iwt} )
j=1

where the encountering frequency is given by @ = @, - Uk , cos B with B the incident wave angle
referring to the positive x-axis; ¢; (j =1 - 6) represents the radiation potentials corresponding to six
modes of oscillation motion respectively and ¢, indicates the scattering potential which includes an

incident wave potential ¢,and a diffraction potential ¢.,.

Based on the assumption of small current velocity, terms of order O(U?) are dropped. The
steady disturbance potential satisfies a rigid wall condition on the free surface and can be solved by
double-model method.
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In addition to the governing Laplace equation and rigid wall condition on the sea bottom, each

mode of the unsteady potentials satisfies the following boundary condition on the free surface and
body surface respectively.

f)—d—)’— - V@ - 2iTW-V ¢; +.itg; 92—9= o(7?)

0z 0z2

atz=0 (j=1-7) (2a)

d¢; nj- mmfiv (j=1-6)
—= at body surface S 2b
on - d¢p/on (j=17) 0 (2b)
where 7= l/g (3a)
v =g (3b)
W =V{x+9) (3¢)
(n1 ) Ny, n3) =n, the inward unit normal vector of the body ' (3d)
(n4, R, n6) =XXn (3e)
(m1, my,m3)=-(n- V) W; -6
(ma, ms,mg)=-(n- V)(x x W); (3g)

Then each mode of unsteady potentials is expanded into power series of 7, i. e.

0 = /'(0)+ 1¢,~(1)+ ol7?) (4)

Substituting this expansion into the above boundary conditions and collecting terms with the

same power of 7, we can obtain the boundary conditions satisfied by potentials with different orders.
For the zeroth order, it is the same as those in the problem without current:
a¢,»(°) (0) .
——-ve¢ =0 atz=0 G=1-7) (5a)
0z
% _fn (j=1-6)
on  L-0¢g/on (j=7)

The current effects including the contribution from the steady disturbance potential ¢ enter in the first

at body surface Sy (5b)

order problem, i. e.

(1)
a(g’z - v¢,-(l)=ﬁ atz=0 U=1-7) (6a)
W T o=1-6
a‘gj = Oz’v (’(7.= D) ) at So (6b)
n
27 _ 2
where f}-: 2i W'V¢j(0)' i j(o)% +57j(2l V¢V¢0 - i¢ogz¢;) (60)

According to Bao & Kinoshita (1994), the far field condition for each order of potentials is

given by
©)

lim 7 (Mg—r Cikg®) =0 atr—e (7a)
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(1)

ag; ’ (1)

- tkgj - ik ¢J at r —oo (7b)
’
where k; = 2kcos6 (7c)
tanhkh + khsech2kh
and k tanh kh = v (7d)

Because of the perturbation method used in the present work, the far field condition implies
that q’) would be divergent at far field. Therefore, the solution is regarded as a "near field" one

which is valid only in the region of r < o0,

2. Hydrodynamic Forces

The problem can be solved by the eigenfunction expansion method in a similar way to solving
the diffraction problem in our previous work(Bao & Kinoshita, 1994). To apply the method to the
interaction problem of multiple bodies, it just needs to replace the diffraction of incident wave by the
radiated waves for each body.

Once the potentials are solved, the hydrodynamic forces can be evaluated by integrating the
hydrodynamic pressure over the wetted surface of the bodies. The hydrodynamic coefficients, i.e. the
added mass and damping coefficients, are given by

Fij = oy - Avij = p[SO[iwtpj -UwW-V ¢1] nids (8)
By the Tuck theorem(Ogilvie & Tuck, 1969), the integral involving W can be evaluated by
2 .
IS()(W . V¢j) nids = - IS() ojmds + ICQ ¢j5; nidi )

where G, is the waterline of the body. Because of the rigid wall condition satisfied by the steady
disturbance potential ¢, the integral along waterline C vanishes. Thus the hydrodynamic coefficients

may be written as
Fy= piwf ¢ Inids + tpicf 5o ( ¢‘°’) ds +0(12) (10)

The integral of the first order potential can be transferred to the integral involving the zeroth
order potential only by using the Green's theorem.

(1) (1)
(1) . (009 (1)3¢ (0)3¢
lsp 97 mds =[50 =5 —ds - JSF+S[ “on "% Ton }ds (In

By means of the boundary conditions satisfied by different orders of potentials on the free
surface and body surface as well as at far field, it can be shown that

FU - lwtu’u A’lj - lwu blj +7 { p— (ml (0) mj¢l 0)) ds

-pef;, [ 6w 760)- 4w v9{]as } (12

where a; and bij is added mass and damping coefficient without current respectively, i.e. the first
term on the right hand side of (10). At this stage, it is easily to verify the well known Timman-
Newman relation(Timman & Newman, 1962), i. e.
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FifU)= F{-U) (13)
where F ﬁ(- U) indicates the result of the inverse flow problem. It is readily obtained by replacing 7 in
the above formulae by - 7. An immediate corollary is that _

Fi{U)= Fi{0)+ O(<?) (14)

This means that up to the order of T the diagonal added mass and damping coefficients depend on the
current speed only through encountering frequency.

When the wave exciting forces are considered, a similar deduction can be made as follows,

Fi= P%]so[iw% - UW -V gp] mds
P8 ai)“’js (O), 15 1 PEN? 50“’[ (08 + 72 6% s 40l (15)

Noticing that ¢1()1) satisfies a homogeneous boundary condition on the body surface Sy the
{inal result is given by

Fi=F 1(0) +Tpg Co{ lls (mi-nikocos ﬂ)‘l’t()o) ds

+i .JSF (0) (2V¢ V¢ ¢0""£) ds

[@“”(W v91)- iglw-v ()]s }+ol) (16)

F; OF is the wave exciting force without current effect given by the first integral in the last line of (15).

where

Once the above potentials and motion amplitudes are solved the wave drift force and wave
drift damping can also be calculated. Some numerical examples will be presented later.
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DISCUSSION

Eatock Taylor R.. Have you any comments on the convergence of the free surface
integrals in your expressions for wave excitation and hydrodynamic forces, for the cases
you are considering?

Bao & Kinoshita: It is a sacrifice that we have to do integral over free surface if we try
to evaluate hydrodynamic forces without solving the first order problem. Terms associated
with undisturbed uniform flow in the integral do cause some trouble in convergence. In
the case of circular cylinder, we found that these terms will converge at an order of 1/r2.
So the integral over free surface exists. In numerical calculation, we have to extend the
integral range to the place 20 times of the cylinder radius away from the cylinder to get
enough accuracy.

Grue J.: How does the method converge when evaluating wave drift damping of a freely
floating body? What is the truncation radius at the free surface?

Bao & Kinoshita: The wave drift damping can only be evaluated by integrating the
pressure over the wetted surface of cylinders after solving for each order of potential in
our method. This integral will not cause any problems of convergence. However, to seek
a particular solution which satisfies the inhomogeneous free surface condition for the first
order potential, it will be involved in an integral over the free surface. Since the particular
solution corresponding to the inhomogeneous terms associated with uniform flow, which
will indeed cause the integral divergent, has been obtained by a derivative operator, the
remaining terms are all associated with steady disturbance potential which decays fast
enough to ensure the convergence of the integral. Therfore, the truncation radius of this
integral over free surface could be the same as used in the boundary element method.
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