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Abstract

Mass transport induced by a wave maker in two-
dimensional wave tank is studied theoretically and ex-
perimentally. Viscous effects on free-surface and water
bottom are considered by the boundary layer theory on
the basis of Longuet-Higgins’ thoery. Contributions by
local waves in front of a wave maker are exactly taken
into account by the eigen function expansions. Stream
lines and velocity vectors are presented graphically and
they are validated in comparison with measurements in
a wave tank.

1 Introduction

Mass transport in water waves is a nonlinear phe-
nomenon and it plays important role in the environ-
mental problems in the ocean such as the propagation
of oil spills and the diffusion of contaminated materials.
Stokes drift gives the steady velocity as same direction
as wave propagation over the water depth, which results
in contradiction of mass conservation. Therefore, Eule-
rian return flow is needed to satisfy the mass continuity
equation. Longuet-Higgins(1953) gave analytical solu-
tions of mass transport streaming for regular waves and
partially reflected waves over a constant water depth,
where the vorticity equation is solved by the laminar
boundary-layer approximation at the free-surface and
the water bottom. Iskandarani and Liu(1991) developed
a numerical method using a spectral scheme based on
a Fourier-Chebyshev expansion to compute the steady
flow over a hump on the seabed.

We are interested in the control of the mass transport
in waves by an ocean structure, so that we must solve
the vorticity equation around an arbitrary body. A nu-
merical method like Iskandarani and Liu may be useful
generally, but a semi-analytical approach is possible for
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a wave maker problem in constant water depth treated
here. The stream function for mass transport is calcu-
lated from the products of the first-order eigen functions
for progressive wave and local waves. Some numerical
results for a flap type wave maker are presented graph-
ically and they are compared with measurements.

2 Formulation of the problem

2.1 Definition of mass transport

We consider regular waves progressing on a constant
water depth(z = h) as shown in Fig.1. The velocity
and the stream function are expanded in an asymptotic
series of a small parameter ¢, as follows.
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Mass transport velocity(e?Us, e2Wy), defined as the
average of the Lagrangian velocity, becomes
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where ¥ denotes_ the stream function for the mass
transport velocity U as:

U =1+ (3)

Stokes drift is calculated from the second-term of
eq.(3).

Next, vorticity equation is obtained from the rotation
of incompressible Navier-Stokes equation as:
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where v is the kinematic: viscosity.
From first-order term in eq.(4), we obtain

Vo = v / T dt. ()
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Second-order term of time average of eq.(4) is
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Substituting eq.(5) into eq.(6), we obtain
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From eq.(3), the governing equation for ¥ becomes
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This equation is treated by the boundary-layer theory.
In the exterior region, eq.(8) is written as follow since

we can assume ¥, satisfy the Laplace equation.
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In the interior of boundary-layer, we have Stokes so-
lution for oscillating low on water bottom. Last result
of boundary condition for ¥ on water bottom is given
by Longuet-Higgins as:
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where qS‘lx’) denotes the first-order tangential velocity
at outer edge of the boundary-layer at the fixed wall and
superscript * denotes complex conjugate of the value.

The boundary condition at {ree-surface is given as
follow, which is interpreted as zero-tangential stress at
free-surface.
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2.2 A wave maker problem
Let us denote oscillations of a flap type wave maker at

z = 0 as shown in Fig.1:

O(t) = Re{foe“} (12)

The velocity potential ®(z, 2, 1) is expressed as:

&(z, z,t) = Re{iwboé:(z,2)e*} (13)

The first-order potential ¢,(z, 2) is given by the eigen
function expansions:
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Corresponding stream function is expressed by:
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The free-surface elevation is given by:
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Unknowns aj,(j = 0,1,2,---) are determined by the
boundary condition at z = 0 as:
| o

Let the stream function split into the progressing
wave and local waves as follows:

0<z<d
d<z<h
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The governing equation of a stream function for the
mass transport in the exterior of the boundary-layers
is given by eq.(9) and the boundary conditions on the
free-surface, water bottom and the flap surface are sum-
marized as:
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where, Viy = (—w, u)
The total horizontal flow due to the mass transport
must be zero, so that

U(z,0) = ¥(z,h) = ¥(0,2) =0

Furthermore, ¥ must be bounded at z — +4c0.

(24)

Next, we split ¥(z, z) into four parts as:

¥y = W1(¢0,¢0)+Z‘I’2n(¢0,¢Ln)

+ 5 Vanm (Vrns¥im) + Va(z, 2) (25)

Solutions for ¥,, ¥y, and W¥i,, are obtained ana-
lytically if we allow them free from boundary condition




imposed at z = 0. ¥, is already given by Longuet-
Higgins(1953).

¥,, denotes interactions between ¢y and ¥, and is
expressed by:
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Substituting €q.{26) into eq.(9), we obtain two equa-
tions with respect to Z, and Z. which yield an eigen-
value equation. Solving the eigenvalue equation, we ob-
tain

Uy =

(26)
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where

Aj = 4k £ ik, (j=1 ~ 4) (28)

Unknowns Aj, B; are determined by boundary con-
ditions at free-surface and water bottom.

Us,,» denotes interactions between ¥, and ¥rm.
Assuming a solution of the form as:

Yapm = ZL(z)e—(k""'k"‘)x
Substituting eq.(29) into eq.(9), we obtain
Z1(2) = (C14C32) cos knm2+(C3+C42) sin kpm 2z (30)

where kpm = ky + k.-
Unknowns C; (j=1 ~ 4) are determined by boundary
conditions at free-surface and water bottom.

¥, is obtained so that W satisfies the boundary con-
ditions at z = 0, and satisfies homogeneous condition
at other boundaries. Assume a solution of the form for

v,

(29)
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where o = j/h
Then unknowns Dj and Ej, can be determined from
known values of ¥,, ¥g and ¥3 at z = 0.
Finally, mass transport velocity is obtained by eq.(2).

3 Experiments

Experiments were conducted at a narrow wave
tank(L x B x D = 25m x 0.6m x 1.0m) with a flap
type wave maker. Water depth set 0.3m. Fluid velocity
were measured by an electro-magnetic velocity meter
at several points in regular waves. Eulerian currents
were obtained by averaging of measured records for 70
seconds. Wave height was about 0.05m and Eulerian
currents were less than 0.03m/s in the experiments.

4 Results and discussion

Fig.2 shows calculated stream lines of mass transport,
where four components and total stream lines are pre-
sented. Solid lines denote positive stream lines which
circulate clockwise and dotted lines do counterclock-
wise. U, is most dominant just away from the wave
maker. Wy and ¥, induce strong circulation near the
wave maker, but they are opposite direction so that they
weaken each other. Effect by ¥3 is small in this case,
but they may depend on the wave number.

Fig.3 shows a comparison of Eulerian velocity distri-
bution between measurements and calculation. Plotted
vectors are normalized by

ou
o=
)

@

X 1.0
Z
0.0 '\I»'a
L
A
0.3 & M
0.0 0.5 ' 1.0
Z
0.0 : ,\IJZ
4
0.3 N
0.0 0.5 X 1.0
Z
0.0 \I,l
.............................. (--.—_-..__---_.__-.._..
0.8 [oooommmmnmmmmmm e hutaedeiote Laniotaiuiaintuisib ittt
0.0 0.5 X 1.0

Fig.2 Calculated stream lines of mass transport
(Tw = 1.0sec)
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Measurements may contain some contradictions due
to measuring accuracy, but general tendencies seem to
agree with calculations.

Mass transport may be estimated by Eulerian mea-
surements plus Stokes drift calculated from the theory,
because the first-order quantities are known to agree

u=

(32)

There are two currents near bottom and free-surface
which flow as same direction as waves. Bottom
current could not be explaind by the potential ap-
proach.(Hudspeth and Sulisz(1991))
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DISCUSSION

Roberts A.J.: T wonder how you computed estimates of Lagrangian velocities from the
Eulerian measurements of velocity in the experiments, this seems to me to be a difficult
process.

Kyozuka Y.: Stokes drift assumed to be calculated by the amplitude of the propagating

waves, because, accordmg to my knowledge, the first-order quant:txes are known to agree
well W1th theory in a wave maker problem. Then, mass trasnport is obtained by adding
Stokes drift to Eulerian measurements, because my main concerns are on mass transport
by waves.

Tulin M.: I want to congratulate Prof. Kyozuka for studying these wave induced tur-
bulent circulatory flows in the wave tank. They are usually ignored, although we do not
actually know their effect on the waves. Have you considered pumping the drift flow from
the down-stream end, back to the wave maker?

Kyozuka Y.: The drift flow from the down-stream end is possible if there exist the
reflected waves from the beach. They will produce partial circulations due to partial
standing waves. As the reflected wave coefficients were less than a few parcent in our
experiments, we think those effects might be negligible. We generated waves for 90 seconds,
and analyzed the data for 70 seconds in the middle of measurements.

Choi H.S.: You said in your talk that you obtained the Stokes solution for the biharmonic
in the boundary layer (laminar) near the bottom. The Stokes solution in two dimensions
contains a logarithmic term, which causes trouble for the fluid region outside the boundary
layer. Would you tell me why you treated this term?

Kyozuka Y.: In the first- order problem in the interior of the boundary layer, N-S equation
is witten by
I 3 (c0)

(_ - _)_ = s

2
On
Since the first-order motion is simple harmonic, we have a following solution which satisfies
the boudary conditions at n =0 and n =

o o0
anl - .(S'l )(1
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where ’
a = (iw/v)!/?

In our analysis, we didn’t include a singular part of Stokes solution because there is no
reason to include a singular part in this problem.
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