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1 Introduction

The question of how rapidly transients associated with the abrupt motions of a floating body
decay is one of fundamental theoretical interest as well as practical importance. The rate at
which transient oscillations vanish and measurements taken is of some concern in model tests
especially for unsteady and local effects. The question of the behavior of transients comes up
also in almost all numerical simulations in the time domain and directly affects our abiﬁty to

extract steady-state predictions for resistance problems and to obtain meaningful results for
general seakeeping problems.

Despite the obvious importance, the problem appears to have been addressed only for the
idealized case of a single translating source of known strength. Havelock (1949) considered the
two-dimensional problem of the wave resistance of a submerged circular cylinder impulsively
started from rest. By approximating the body as a point dipole of constant strength, he derived
a closed-form solution for the wave resistance. The significant finding is that for a given fotwa.rd
speed U, the resistance oscillates about the steady value with the frequency w. = g/4U, where
g is the gravitational acceleration, and the oscillation decays only like t~Zelwet as t — co. This
result was extended to three dimensions by Wehausen (1964) who considered a constant source
started abruptly and obtained that the unsteady resistance vanishes like ¢~1ei“ as t — oo.

The above results can be understood by considering the associated classical seakeeping problem
in the frequency domain, wherein it is known that (for a single source) the solution is in fact
singular at the frequency Uw./g = } (Haskind 1954). Recently, we (Liu & Yue 1993) showed
that for an actual body the solution at the critical frequency is finite for a general class of
bodies (admissible bodies) subject to a single geometric condition. An immediate consequence
of this finding is that the decay rate of transients must necessarily be an order faster than the
single-source predictions of Havelock (1949) and Wehausen (1964) for this class of geometries.

In this work, we consider the starting from rest to steady speed of a general body. To solve
the problem, we use a transient source distribution on the wetted surface of the body, where
in general the singularity strengths are unsteady and part of the solution of the problem. Our
analyses show that for admissible bodies, the transient decay rate is indeed more rapid than
for constant strength isolated singularities, with the unsteady wave resistance in two and three
dimensions decaying respectively like O(t‘l,t'%e'i““‘) and O(t~%,t"%el“t) as t — oco.” These
results are substantially confirmed by carefully controlled numerical simulations in the time
domain.

2 The Transient Solution of a Body Started From Rest

As with the demonstration for the frequency-domain problem (Liu & Yue 1993), the transient
analysis is general for submerged and floating bodies with the extra complication in the'latter
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of a waterline integral. For simplicity, we focus in this presentation on the case of a submerged
body only. We construct the velocity potential, ®(Z,t), in terms of a source distribution:

8(Z,t) = /S U o(F, 1) A (1)

where & represents the body-fixed Cartesian coordinates, o(Z',t) the source distribution on the
body, and ¥ the single-source potential. Unlike Havelock (1949) and Wehausen (1964), we
allow the source strength o to be time-dependent and as yet unknown. For convenience, we
decompose o(Z',t) into steady and unsteady components:

o(@,8) = 5(&) + 5(F 1) + (3, 1) (2)

where & is independent of time, and & is assumed to be a continuous function of time for
t € (0,t0) and vanishes for £ > t, while & is identically zero for ¢t € (0,%,) and decays smoothly
as t — oo. With (2), the potential in (1) can then be rewritten as:

o1 = [ U@ ds'+ [ )+ [ WES,HE0)ds . ()

For a given source strength, the source potential ¥ is known and its asymptotic time dependence

for large time can be explicitly extracted. Upon using large-time expansions of ¥(Z,Z’, 5(z"))
and ¥(z,%',5(Z',t)) in (3), we obtain

ae—cht

8(z,t) = /s 5()G(z, 7") ds' + /S U(E, &, 6(F,1)) ds' + 2= exi=+) 4 cc 4 (hot) (4)
B B

as t — oo. In the above, the wavenumber « = ¢/(4U?), v = 1 , and 1 for two- and three-
dimensional bodies respectively, and G is the steady source potentxal Here, c.c. represents the
complex conjugate of the preceding term, and (h.o.t.) higher-order terms. The constant « is the
Kochin function and depends on the source strengths & and &. Note that if & = 0, the results
of Havelock (1949) and Wehausen (1964) directly follow from (4). In order to find the exact
decay rate of the unsteady potential in (4), it is necessary to determine the time dependence of
the unsteady source ¢ first. To do that, we impose the body boundary condition on & in (4)
and obtain an integral equation for the unsteady source 4

—w._.t .
t) + ][ v.(F,&,6(F,t)) ds’' + —ak(ing + n,)e™®+?) 4 c.c. = (h.o.t) (5)
Sp

ast — oo for Z € Sg.

Based on the large-time asymptotic expansion of the single-source potential ¥(Z,z’,t™Ye <),
we can show that the solution of (5) depends on the geometric parameter (Liu & Yue 1993):

F= [ n,e*ds. (6)
Sgp

If T # O we find that the Kochin function @ = 0, and the unsteady source &(&',t) =
O(t~1,t~3e"w<t) and O(t2,t~2e™“<*) for two- and three-dimensional bodies respectively. Thus,
the unsteady potential in (4) decays like O(t™,t~ 7e“et) in two dimensions and O(t2,¢~ “"“)
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in three dimensions. If I' = 0, on the other hand, the unsteady source & is at least O(t™ e iwet)
so that the unsteady potential in (4) may not decay at all.

As mentioned earlier, the above analysis and results can be generalized to surface-piercing
bodies by including the contribution of the waterline source distribution in (1). Furthermore,
by using Fourier transformation, the present results have also been extracted from the frequency
domain and in particular from the behaviors of the solution near w = 0 and w,.

Note that the necessary and sufficient condition for T' # 0 for a submérged body is that it has
non-zero volume. For surface-intersecting bodies, the condition T' # 0 has a simple geometric
interpretation similar to that of John (1950). Details can be found in Liu & Yue (1993).

3 Numerical Confirmation

We confirm the above results through direct long-time numerical simulations in the time do-
main. The first problem we consider is that of a two-dimensional submerged circular cylinder
started impulsively from rest to constant forward speed. The numerical code is a forward-speed
extension of our spectral method (Liu, Dommermuth & Yue 1992) which provides efficient high-
resolution transient results. Figure 1 shows the comparison between the numerical result and
the fitted asymptotic solution based on the above analysis for the unsteady wave resistance on
the body. The behavior of the decaying transient solution is well corroborated. Figure 2 shows
the time-dependent behavior of the source strength on the body. For simplicity, only the first
(circumferential) Fourier mode is plotted. The comparison between theoretical prediction and
numerical result is excellent. ’

As a second problem we consider the unsteady resistance of a surface-piercing three-dimensional
body. Specifically, we choose a Wigley hull at a Froude number of 0.15. The numerical simula-
tion is performed using a time-domain transient Green function method of Lin & Yue (1990).
The comparison between the theoretical asymptotic solution and numerical calculation for the
time-dependent resistance is shown in figure 3. The agreement is again excellent and confirms
the O(t~2) approach to steady-state resistance.
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Figure 1: Comparison between numerical simulation result (o) and fitted asymptotic solution
(—-—), U/(gR)3 = 1., H/R = 2., R: radius, H: submergence.
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Figure 2: Comparison between numerical result (o) and fitted asymptotic solution (— - —) for
the source distribution on the cylinder, U/(gR)? = 1., H/R = 2..
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Figure 3: Comparison between numerical result (o) and fitted asymptotic solution (— - —),
U/(ga)s = 0.15, b/a = 0.1, h/a = 0.0625, a: length, b: width, h: draft.

152




DISCUSSION

Tulin M.: How does the amplitude of the transient waves in the wave group traveling with
the ship (responsible for the encounter frequency w.) vary with time? Is the relationship
between these transient waves and the interaction force linear? If the amplitude of the
transient waves does not vary as t71/2 (2D) or 7! (3D) (as it would for the waves from

an initial impulse), then why not? In any event, your results are quite remarkable and the
analysis is formidable.

Liu Y. & Yue D.K.P.: Our analysis is completely linear and the interaction foxl"ce is
linearly proportional to the wave amplitude. The amplitude of the transient wave (at
frequency w,) traveling with the body decays as t=3/2, t=2 for ¢ > 1 for 2D and 3D bodies
respectively. The amplitude does not vary as t~!/ 2 t~! which would be expected for
isolated singularities (or arbitrary distributions of such singularities).

The key distinction between the present case and the classical analyses of Havelock
(1949) and Wehausen (1964) is that their results are for a single source (or dipole) while
the present analysis applies to an actual body on which a body boundary condition (BBC)
must be satisfied. We show that for bodies satisfying T # 0, the net strength of the t—1/2
t~1 disturbance, represented by the associated Kochin function «, vanishes as a result of
satisfying the BBC. The remaining contribution is then higher order in time for ¢ > 1.
When I’ = 0 (which incidentally includes the case of a point singularity), the part of the
kernel which multiplies « in the governing integral equation itself vanishes and the ¢—3/2,
t=2 decay rates for 2D, 3D do not obtain. This result is consistent with the frequency-
domain analysis which gives bounded solution at 7 = 1/4 for I" # 0 bodies (Liu & Yue
1993).

That this is the case can be argued physically. It is somewhat simpler from the
frequency domain. The induced velocity at any point s due to a source distribution o(s')
on the body contains a free surface part V?(s) which depends on the non-Rankine portion
of the Green function. For §2 = |47 — 1| < 1, one can show from the asymptotics that
V7(s) ~ asf(s), where a, is associated with a Kochin function and f(s) is a property of
the geometry (and frequency) but is independent of 0. As § — 0, f(s) becomes unbounded
(everywhere) like 6~1. In order for a body boundary condition (for finite forcing) to be
satisfied as § — 0, it follows that a, ~ O(§). For bodies satisfying I' = 0, however, we find
that f(s) = 0 at w, and the preceding result does not obtain. Note that I' depends only
on the body geometry and frequency but not the forward speed U. Physically, I' =0 for a
body implies that it possesses an irregular frequency wy, at which a non-trivial o exists for
a homogeneous f(s). The solution is then not bounded at wy = w, = 4¢g/U. This condition
is independent of U and not surprisingly has the same interpretation as the condition of
John (1950) for the uniqueness of the radiation and diffraction problems without forward
speed.

Yeung R.W.: In reference to the 3D results, I notice the major difference in the conclu-
sion on the decay rate of the oscillating wave resistance from that of Wehausen (1964). Is
it appropriate to state that the main cause of this difference is simply related to assuming
the source strength to be oscillating in w. and decay like =27

Liu Y. & Yue D.K.P.: No. The main reason is the fact that an actual body rather
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than a point singularity is considered (see discussion to Tulin above). In this case, it is of
course unreasonable to assume constant (or an a prior: prescribed) temporal dependence
of the source strength which should be determined from the body boundary condition.

Roberts A.J.. There exists a simple resolution of Tulin versus Yue; that is, a source
generates fluid whereas the movement of a body conserves fluid. This qualitative difference
could easily account for the qualitative difference of t~! decay (source) with ¢t=2 decay
(body). However, what if the flow around the 2D body involves non-zero circulation (e.g.
hydrofoil)? Is the transient decay t~! or ¢t~2? '

Liu Y. & Yue D.K.P.: The asymptotic decay rate of the transient waves due to a dipole
(or vortex), which conserves fluid, is in fact identical to that for a single source. The actual
mechanism for a more rapid decay associated with a body is somewhat more involved (see
discussion to Tulin above). '
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