The Slender Body Approximation of a Ship in Following Sea

Koji Matsunaga
Ishikawajima-Harima Heavy Inddustries Co., Ltd.

1. Introduction

The analysis which will be developed here intends an application of the slender body
theory to the case of a ship running in the following sea. When the encounter wave fre-
quency tends to zero, it is known that the prediction of the wave bending moment from
strip theory will diverge. And the broaching phenomena of high speed small ships may
occur under this circumstances.

To study the physics of following sea problem, theoretical formulation using slender
body approximation is developed here. In addition to the slenderness ratio of the ship hull
form, the encounter wave frequency and the incident wave angle are also assumed to be
small in this formulation. Velocity potentials for steady forward motion, radiation and
diffraction problems are perturbed to formulate the linear boundary value problems.

The flow field around the ship is found to be characterized mainly by the steady motion
parameter v. And the inner expansion of the Kelvin wave source potential is modified for
diffraction problem in accordance with Tuck® and Reed?.

2. Perturbation expansion®
Assuming the small disturbances, we define our discussion within the limit of linear
theory. The plane-progressive wave potential is expressed in the moving reference frame
direction fixed on the ship. !
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Here Kois the wave number, ois the radiation frequency in the space-fixed reference
frame, wis the frequency of encounter, and Y, denotes the angle of the wave propagation
relative to the direction of the ship's forward motion. :

The total potential consists of the steady and unsteady components. With the restriction
that the unsteady motions are sinusoidal in time with the frequency of encounter ®, the
unsteady component of the velocity potential can be expressed as I
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Here ¢, is the incident-wave potential of unit amplitude, and ¢, is the scattered poten-
tial. The components ¢, are the radiation potentials due to motion of the ship. Each compo-
nents are governed by the hull boundary conditions as follows.
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The slender body approximation is now introduced. Firstly we set the order of magni-
tudes for U, o and @ such that
U=0(), o,=0(1), 0=0() . 2.4)
From the hull boundary conditions, the leading orders of each velocity potentials can
be estimated

$,=0(e), ¢,=0(), ¢,=0(). ¢,=00) (2.5)
Secondly we assume the magnitude of the incident wave angle  is also small. Then the

scattered potential is expanded in ascending power series of e and ¥, and the leading order
term of the scattered potential with respect to € can be divided into symmetric and asym-
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metric components, if y=0(8) B<<1
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3. Steady forward motion potential

In this section the linear boundary value formulations for the steady forward motion
of the ship are given according to Tuck and Reed. The boundary value problem in the far
field and in the near field are derived from an asymptotic analysis which is valid to
leading order in the body slenderness. When we set ¢, =Ug,

Far Field Near Field
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The solution of the steady motion potential in the far field corresponds to the line
distribution of the steady wave sources. The asymptotic expression of the far field solu-
tion can be reduced*»
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The outer expansion of the inner solution can be expressed in the form
0, =—ax)inr+b(x) (3.4)
The inner and outer solutions are matched to determine the unknown source strength
of the outer solution and the function b(x) in the inner solution.
a(x)=o(x)=S'(x)
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4. Diffraction potential

4.1 Symmetric component

The scattered potential in the far field satisfies the same boundary conditions as the
steady forward motion potential. This means that the symmetric component of the scat-
tered waves behaves like the steady waves in the far field. Thus the same asymptotic
expression as the steady motion potential can be used again.

On the contrary, the near field boundary conditions must include the effects of the
incident wave and the steady forward motion. However the leading-order free-surface
condition for the diffraction problem still remains the rigid-wall boundary condition.

Now introducing new potentials defined as ¢,; =¢, +9¢,¢** and @5 =05+9,, ,

The boundary value problem in the near field reduced to

(L] AP9s=0
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Here we define a new function which coincides with the symmetric componentiin the
far field®.

Pos = Pus + 9" = Py €™
The inner solution takes the form
— 42D iK,x
Ops =@ (y,z)e + f(x) 4.3)

where f(x) is an arbitrary function of x expressing the three-dimensional effect. Similar
matching procedure as in the case of the steady forward motion potential employed again,
and we can determine the source strength using the hull boundary condition ,in the form

4.2)
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4.2 Asymmetric component

The asymmetric component of the scattered potential in the far field can be expressed
as a line dipole distribution along the x-axis. The asymptotic form is reduced to

y(x)d, 1, , 2 .
P = T-gy-ln r+gv yf dér (é)[mﬂl(V(x =&} {2+ sgn(x - 5)}{1/2(V|x - &) +,(vix- )} ]
4.5)
The boundary value problem in the near field can be treated as the same way as the
symmetric component.

Defining the new potentials $u =9.4¢*" and ¢, =94 -iK,y9,. , the final boundary
conditions are reduced such as

(L] AP%¢,=0
[F1 %¢,A=0 on z=0

d d
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Definition of the new function which coincides with the asymmetric component in the
far field, and the expression of the solution in the near field o

o = Bus — K,y = 916" (4.7)

Oos = 03°(7,2)™ + yg(x) (4.8)

Results of the matching procedure. |

b,(x)e™* =y(x)

gx)= {;—L_dér'(é)[;(;%_—é-)-ﬂl(v(x— &) + {2 +sgn(x — §)}{Y2(vl x— &)+, (Vx - él)} ] ' 4.9)

Coming from the asymmetric feature of the near field potential, we can not determine
the strength of the dipole distribution directly from the hull boundary condition in this
case. Considering the normal derivative of the inner solution, we can obtain an integral
equation to determine the dipoles.

5. Forces acting on the ship

From the theorem due to Tuck?”, the periodical hydrodynamic forces is given in the
form

F,=p[[(ion, -Um)eds 5.1
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Substituting the diffraction potential, we can obtain the wave exiting force for i=1 or 5,
it follows that :

E = pﬁ(iwni —Um;)(@,s + dus)ds

5.2)
= ij{iw"i¢ws ~Um;(§,s + ¢ds)}d~"
and the radiation force can be expressed in the form
F; =p[[(ion, - Um)¢,ds
S (5.3)

=py (~Um;)9; ds

Here the yaw exciting moment which will cause the broaching can be estimated, using
the asymmetric potential defined ¢, =(¢,, +9,,)x it follows that

E = p‘”(iw”s - Ums)(¢w4 + ¢4A)Z ds
Sy 5.4

=p£ [(~Umg) (@ + 6 )1 ds

The final results show that the interaction between the steady forward motion and the
incident wave plays significant role in the following sea problem.
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